Age | Commit message (Collapse) | Author |
|
Strictly speaking this decoder considers all input signals as optional.
The previous version accepted clock alone. Though reading values from
zero data bits is of limited. Tighten the check for connected inputs.
Inline the declaration of all channels in the decoder boiler plate, the
helper routine was only used in a single spot. Change the order of the
data lines stripe details and the .wait() conditions, improve locality
of assignment and use of related variables.
Don't assume that "all channels but clock" are data lines. Use a
symbolic upper bound for the data lines partition, to prepare the
introduction of a reset/enable signal.
|
|
Concentrate tunables at the top of the source code. Eliminate magic
numbers by replacing them with symbolic identifiers.
|
|
The 0.652ms STOP bit width must have been a typo (though consistent in
the previous implementation), it's not half of the 1.125ms ZERO symbol.
Notice that this is an incompatible change to the decoder implementation.
It affects the annotations for STOP bits and overall REMOTE button codes.
|
|
Extend comments on the IR NEC timing details. Sort the symbols by their
width to reflect their relation (ONE to ZERO to STOP is each half of
their predecessor's width).
Increase the open coded tolerance percentage, and remove the option for
the value. Make sure leader and repeat codes still can be told from each
other.
|
|
Move IR NEC protocol timing details to the top of the source file, for
raised awareness and easier adjustment. Specs are "unit-less" (only have
comments), but are scaled for improved readability. Values are copies of
the previous implementation.
|
|
Provide an option to have the decoder automatically detect the IR signal's
polarity. Stick with active-low by default for backwards compatibility,
because this auto-detect implementation assumes that the capture starts
with an idle phase.
[ gsi: rephrased message and implementation, auto-detect off by default ]
|
|
Provide an option to adjust the IR NEC decoder's tolerance. Which makes
signals accessible that are generated by cheap remotes which would not
decode at all with the previous implementation and its fixed limit.
[ gsi: rephrased commit message and implementation ]
|
|
Emit annotations for the current IR frame as soon as possible, at the
very end of the STOP bit. Don't defer annotation emission until the
start of the next frame is seen. This unbreaks captures where the last
IR frame would not decode before.
[ gsi: rephrased commit message, updated comment in the implementation ]
|
|
The Joy-it SBC-IRC01 remote control appears as address 0x00.
|
|
Assume a maximum memory capacity, currently open coded, could become a
user servicable option when needed. Automatically flush the accumulated
outgoing data when a memory read reaches address 256.
Drop the unconditional START condition check now that it became obsolete.
|
|
The protocol is clocked, so strictly does not depend on the samplerate.
When the samplerate is available, the duration of internal processing
(memory erase and write) can get annotated. It's an optional feature.
The datasheet suggests that write and erase time are in the range of a
few milliseconds. Normalize to ms units and provide 10us resolution.
|
|
Rephrase how the decoder's progress during data interpretation gets
tracked. Extend the set of .wait() conditions in the main loop, and
determine START/STOP conditions and BIT validity there already, which
reduces redundancy with called handlers.
Increase the decoder's coverage of the memory card's feature set and
constraints. Handle the optional CLK during RST, to tell interrupted
memory access from card reset. Interpret known command codes, to present
their meaning and arguments to users, and to tell "outgoing data" (the
card's memory content) from "internal processing" (providing clock until
the card signals completion of a write access). Get initial statistics
on internal processing (clock count, and terminal I/O level, no duration
in units of wall clock time yet).
Unfortunately there is no reliable condition to detect the end of a
memory read when it executes to the end of the memory card's capacity.
That's why START detection is more greedy than specified, to reliably
re-sync to subsequent commands and their byte sequences.
Arrange for an improved set of annotation rows with symbols (bit level),
fields (data bytes), and operations details (summary of memory access
including protection).
Rename the binary output. It carries "any bytes" which were seen, the
command bytes as well as response data bytes.
|
|
Coupling the logic which interprets input signals at different levels
and the helpers which emit annotations by means of "global" variables
(public members of the decoder object) is unfortunate. It complicates
the logic, adds unnecessary dependencies, and makes maintenance rather
tedious and error prone.
Pass ss/es times to put() routines the same way as annotation classes
and annotation texts are passed. This simplifies the logic where bits
and bytes levels and additional rows are handled. The data values and
their spans all become local information that gets determined in the
same context. Which dramatically simplifies review.
|
|
These are just nits, behaviour remains. The comment may be incorrect
how command and data modes are detected. Add a developer comment for
later revisit. Drop unneeded parentheses in a ternary operation, and
move an ATR related comment around.
|
|
The decoder cannot know the state of the input signal before the start
of the capture. Assuming the RESET state results in incorrect output for
data bits which we don't know the context of. Start from unknown state
instead until a reliable condition is seen to synchronize to.
|
|
The 'databyte' is strictly local to the routine when 8 bits were seen.
The 'bitcount' is redundant and becomes obsolete when bits[] is a Python
list. The comment and the code disagreed, the wire is said to communicate
bits in LSB first order, the implemenation kept accumulating bits in the
reverse order (the annotation part, not the data byte math). Prefer the
common helper to convert bits to bytes.
There is uncertainty about the bit width "estimation" logic. The main
loop's .wait() conditions suggest that data bit values are valid for the
period of high CLK, which provides an easier and more robust condition
for annotation boundaries. Add a comment for now. The order of bit and
byte values' annotation emission is unfortunate, too.
|
|
Concentrate all text variants for zoom levels in a single spot. Remove
duplicates, and on the other hand add more verbose phrases to support
users which are not intimately familiar with the protocol. Prefer the
Python strings .format() method over the % operator for its versatility
and readability.
|
|
Eliminate magic numbers for annotation classes, prefer symbolic names
instead to improve readability. Put the annotation classes in an order
which matches the annotation rows' order. Reduce indentation in the
'proto' table while we are here (yet keep the vertical alignment).
|
|
Eliminate magic numbers for input pins and signal transition conditions.
Which dramatically improves readability and simplifies review.
|
|
The current implementation exclusively communicated the 'RESET'
condition but nothing else. Remove the Python output from the decoder,
it's easy to re-introduce when a complete implementation materializes.
There also is no known recipient of SLE44xx Python output right now
which would expect to see even the currently implemented subset.
|
|
Add a stronger hint to "memory cards", users might expect to see this
detail in the decoder's description. Rephrase how the reset line will
terminate pending memory reads.
|
|
The decoder was created in an older setup and would not load in recent
applications. Add missing boilerplate which is mandatory. Rename 'data'
since annotation classes and rows must not have ambiguous names, and
there is no singular form of 'data' -- use 'fields' instead. This also
fixes a missing line termination at the end of the text file.
|
|
Introduce an initial implementation of the SLE44xx protocol decoder for
Siemens/Infineon SLE 4418/28/32/42 memory cards. ATR (Answer To Reset),
command and data bytes get displayed, and RESET/abort events are marked.
Extracted data bytes are made available as binary output.
|
|
[ gsi: list all classes, break long lines, EEPROM address calculation ]
|
|
Use the warnings annotation class for the "Unknown command" message, the
PE class (programming enabled) is unexpected and most probably a typo.
Drop the empty 'bits' annotation row which has been unused since commit
3b0013416fcfb.
|
|
[ gsi: explicit list of all classes in row declaration ]
|
|
Prefer the .format() method over the % operator. Also vertically align
the non-trivial text alternatives for different zoom levels to simplify
comparison and adjustment during maintenance.
|
|
Eliminate magic numbers which are too hard to read and too easy to get
wrong during maintenance. Prefer symbolic identifiers instead for pins
and annotation classes.
|
|
Extend the __init__.py module's doc string. Provide more details to the
user beyond the vendor's name, to increase the decoder's usability.
|
|
Move the initial synchronization to the input data out of the main loop,
and handle the BREAK symbol when it was seen. Turns out that no state
machine is required to decode the SDQ protocol.
[ best viewed as a whitespace ignoring diff ]
|
|
Move the calculation which involves the samplerate as well as user
provided options out of the meta packet reception and to the top of the
decode() method. Especially only use the samplerate after it was tested
for availability.
|
|
|
|
[ gsi: minor whitespace adjustment ]
|
|
Command lookup for unknown codes resulted in an exception instead of the
'else' clause which was ineffective. Make the check non-fatal.
[ gsi: rephrased commit message ]
|
|
Use a proper .wait() condition to have edges detected in common code,
and avoid the many transitions between C and Python. This dramatically
increases performance of the LPC protocol decoder.
[ gsi: rephrased and reflowed the commit message ]
|
|
|
|
This NFC interface chip is used in the HydraNFC Shield v2.
See also dumps used to validate it on https://github.com/sigrokproject/sigrok-dumps/pull/21
|
|
|
|
|
|
|
|
|
|
|
|
This eliminates array copies and indexed access to bit values in the
calling decoder. Prefer common helpers instead.
|
|
This eliminates array copies and bit order reversal in the calling
decoder. Prefer common helpers instead.
|
|
The CAN decoder collects bits in MSB first order. The SIRC decoder keeps
lists of tuples with bits and their ss/es. Introduce common logic for
LSB and MSB first arguments, and optional array index access, to reduce
redundancy at callers'.
|
|
The CAN frame's ID field gets stored in an .id member, which is
unfortunate. Use .ident instead. The 'id' identifier is a Python
language word, though it's used for PD boilerplate as well. Assume
that the boilerplate is worth keeping, and harder to adjust (more
dependencies), so adjust this PD's implementation to resolve the
ambiguity.
|
|
Eliminate repeated local string manipulation for the purpose of
number conversion from bits input. Prefer the common helper instead
(is an MSB first variant desirable to simplify call sites more?).
|
|
Adjust nits in the previous commit which added Python output to the CAN
decoder. Rename the routine to .putpy() for consistency with other PDs.
Avoid the 'bytes' identifier as it ships with Python as a data type.
Rephrase the construction of the tuple for Python output, to become more
explicit and help reviewers. Partially "undo" the rtr rename, to reduce
diffs to the previous version (see diff HEAD~2 to see the essence). Fix
up a three space indentation issue (which was there before the addition
of Python output).
|
|
|
|
Don't terminate IR frame inspection when successfully decoded fields
fail the validity check. Reset internal state on long periods of idle
level instead (beware of the late detection of the STOP condition).
Unconditionally annotate received fields, and optionally amend them with
a warning annotation. It's unexpected to not see the address field value
at all just because the number was not acceptable for the potentially
incorrect protocol selection.
Rename a variable in the decode() routine. The 'b' identifier suggested
a bit value, but it was used for the pulse width.
|