1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
|
import curses
import random
class ooPuzzle:
"""Encapsulates a oo puzzle state.
No rendering information is stored or interpreted here.
All attributes are intended to be accessed through methods.
If direct access is necessary, here are their explanations:
(the following attributes are constant)
DIRECTIONS is a dictionary mapping:
each direction as a string
to a direction index in range(4)
DX_DY is a list mapping:
each direction index in range(4)
to a differential of form (dx, dy)
EDGES_TO_PIECE_ORIENT is a dictionary mapping:
each tuple of edge-filled statuses in order of direction
to a tuple of (piece id in range(6),
orientation direction in range(4))
PIECE_ORIENT_TO_EDGES is an inverse of the previous mapping.
(the following attributes are set by __init__)
X is an integer for the range of x-positions
Y is an integer for the range of y-positions
game_id is an integer used by set_pieces_from_game_id
It uniquely corresponds to the solution.
toroidal is a bool indicating whether
the border of the puzzle loops back to the opposite side
(the following attributes are variable during normal use)
pieces is a dictionary mapping:
each position of form (x in range(self.X),
y in range(self.Y))
to a piece id in range(6)
inverted_pieces is a closely related mapping to pieces,
where all edges swap filled state
NOT IMPLEMENTED
not_inverted_pieces is similar, but only swaps border edges
NOT IMPLEMENTED
orients is a dictionary mapping:
each position of form (x in range(self.X),
y in range(self.Y))
to a direction index in range(4)
"""
def __init__(self, X, Y, game_id=None, toroidal=False):
"""Create a new ooPuzzle instance.
Arguments.
X,Y : horizontal and vertical size of the puzzle
game_id : passed to ooPuzzle.set_pieces_from_game_id
toroidal : bool for looping around the end of the puzzle
"""
self.X, self.Y = X, Y
self.toroidal = toroidal
self.pieces = {}
self.orients = {}
self.set_pieces_from_game_id(game_id)
# Changing conceptual directions into indices.
DIRECTIONS = {'LEFT' : 0,
'UP' : 1,
'RIGHT': 2,
'DOWN' : 3}
# Changing direction indices into (dx, dy) pairs.
DX_DY = [(-1, 0),
( 0, -1),
( 1, 0),
( 0, 1)]
# Given piece id and orientation direction,
# return edge-filled status for each direction.
PIECE_ORIENT_TO_EDGES = { (0, 0) : (0, 0, 0, 0),
(0, 1) : (0, 0, 0, 0),
(0, 2) : (0, 0, 0, 0),
(0, 3) : (0, 0, 0, 0),
(1, 0) : (1, 0, 0, 0),
(1, 1) : (0, 1, 0, 0),
(1, 2) : (0, 0, 1, 0),
(1, 3) : (0, 0, 0, 1),
(2, 0) : (1, 1, 0, 0),
(2, 1) : (0, 1, 1, 0),
(2, 2) : (0, 0, 1, 1),
(2, 3) : (1, 0, 0, 1),
(3, 0) : (1, 0, 1, 0),
(3, 1) : (0, 1, 0, 1),
(3, 2) : (1, 0, 1, 0),
(3, 3) : (0, 1, 0, 1),
(4, 0) : (0, 1, 1, 1),
(4, 1) : (1, 0, 1, 1),
(4, 2) : (1, 1, 0, 1),
(4, 3) : (1, 1, 1, 0),
(5, 0) : (1, 1, 1, 1),
(5, 1) : (1, 1, 1, 1),
(5, 2) : (1, 1, 1, 1),
(5, 3) : (1, 1, 1, 1) }
# One choice of inverse of the previous dictionary.
EDGES_TO_PIECE_ORIENT = { (0, 0, 0, 0) : (0, 0),
(1, 0, 0, 0) : (1, 0),
(0, 1, 0, 0) : (1, 1),
(0, 0, 1, 0) : (1, 2),
(0, 0, 0, 1) : (1, 3),
(1, 1, 0, 0) : (2, 0),
(0, 1, 1, 0) : (2, 1),
(0, 0, 1, 1) : (2, 2),
(1, 0, 0, 1) : (2, 3),
(1, 0, 1, 0) : (3, 0),
(0, 1, 0, 1) : (3, 1),
(0, 1, 1, 1) : (4, 0),
(1, 0, 1, 1) : (4, 1),
(1, 1, 0, 1) : (4, 2),
(1, 1, 1, 0) : (4, 3),
(1, 1, 1, 1) : (5, 0) }
####
#
# The following methods are low-level,
# and require position inputs to be forced in range.
#
####
def get_piece(self, x, y):
x %= self.X
y %= self.Y
return self.pieces[x, y]
def get_orient(self, x, y):
x %= self.X
y %= self.Y
return self.orients[x, y]
def get_piece_orient(self, x, y):
x %= self.X
y %= self.Y
return self.pieces[x, y], self.orients[x, y]
def get_adj_pos(self, x0, y0, direction,
return_is_internal=False):
"""Returns the position adjacent to (x0, y0) in direction.
direction may be any string or integer in the dictionary
self.DIRECTIONS (case insensitive)
If return_is_internal, then a third output is returned,
a bool for whether both edges are internal.
(If false, then the edges are across a border.)
"""
x0 %= self.X
y0 %= self.Y
if type(direction) is str:
direction = self.DIRECTIONS[direction.upper()]
dx, dy = self.DX_DY[direction]
x1 = (x0 + dx) % self.X
y1 = (y0 + dy) % self.Y
if return_is_internal:
is_internal = (
x0 + dx == x1 and
y0 + dy == y1 )
return x1, y1, is_internal
return x1, y1
def set_piece(self, x, y, value):
x %= self.X
y %= self.Y
self.pieces[x, y] = value
def set_orient(self, x, y, value):
x %= self.X
y %= self.Y
self.orients[x, y] = value
def set_piece_orient(self, x, y, value):
x %= self.X
y %= self.Y
self.pieces[x, y], self.orients[x, y] = value
def set_pieces_from_edges(self, horiz_edges, vert_edges):
"""Convert edge dictionaries into a puzzle state.
Adjacent edges in a solution must be
either both filled or both unfilled,
and so a bit of data is assigned to each pair.
vert_edges is the dictionary for vertical pairs
key: (x, row)
x: the usual x-coordinate of the piece
row: the y-coordinate or y+1, depending on whether
you want the pair above or below the piece
: row == 0 and row == self.Y are border edges
so it's good to think of row as 1-indexed
horiz_edges is the dictionary for horizontal pairs
key: (col, y)
col: the x-coord or x+1, same as row but left or right
y: the usual y-coord
"""
for x in range(self.X):
for y in range(self.Y):
left = horiz_edges[x , y]
right = horiz_edges[x+1, y]
up = vert_edges[x, y ]
down = vert_edges[x, y+1]
piece, orient = \
self.EDGES_TO_PIECE_ORIENT[left, up, right, down]
self.pieces [x, y] = piece
self.orients[x, y] = orient
def set_pieces_from_game_id(self, game_id=None):
"""Convert game_id value into a solution puzzle state.
game_id is an integer
if toroidal: in range(2**( 2*X*Y ))
if not toroidal: in range(2**( (X-1)*Y + X*(Y-1) ))
if None, then a random game_id is generated
"""
# compute:
# n_horiz, the number of horizontal edge pairs
# n_vert, the number of vertical edge pairs
shift = -int(not self.toroidal)
n_col = self.X + shift
n_row = self.Y + shift
n_horiz = n_col * self.Y
n_vert = self.X * n_row
# generate and record game_id
if game_id == None:
game_id = random.randrange(0, 2**(n_horiz + n_vert))
self.game_id = game_id
# prepare to record edges for self.set_pieces_from_edges
vert_edges = {}
horiz_edges = {}
# set the right and bottom border edges
# if toroidal, these will be overwritten in the next step
for x in range(self.X):
vert_edges[x, self.Y] = 0
for y in range(self.Y):
horiz_edges[self.X, y] = 0
# set the edges determined by game_id
for i in range(n_vert):
row, x = divmod(i, self.X)
game_id, bit = divmod(game_id, 2)
vert_edges[x, row+1] = bit
for i in range(n_horiz):
col, y = divmod(i, self.Y)
game_id, bit = divmod(game_id, 2)
horiz_edges[col+1, y] = bit
# make the left and top border edges match the opposite sides
for y in range(self.Y):
horiz_edges[0, y] = horiz_edges[self.X, y]
for x in range(self.X):
vert_edges[x, 0] = vert_edges[x, self.Y]
# turn edges into pieces
self.set_pieces_from_edges(horiz_edges, vert_edges)
####
#
# The following methods are high-level,
# and no longer require position inputs to be forced in range.
#
# (They call the low-level functions when needed.)
#
####
def rotate_cw(self, x, y, turns=1):
"""Rotates the piece at (x, y) by clockwise turns."""
o = self.get_orient(x, y)
o = (o + turns) % 4
self.set_orient(x, y, o)
def random_orients(self):
"""Randomly rotate the current pieces."""
for x in range(self.X):
for y in range(self.Y):
self.set_orient(x, y, random.randrange(4))
def get_edge_pair(self, x0, y0, direction):
"""Returns the edge pair's filled status in direction and is_internal.
direction may be any string or integer in the dictionary
self.DIRECTIONS (case insensitive)
The first output is the status of the edge of (x0, y0) in direction.
The second output is the status of the adjacent edge,
that is, of the piece adjacent to (x0, y0) in direction,
the status of the edge in the opposite direction.
The third output is a bool for whether both edges are internal.
(If false, then the edges are across a border.)
"""
if type(direction) is str:
direction = self.DIRECTIONS[direction.upper()]
piece, orient = self.get_piece_orient(x0, y0)
edge0 = self.PIECE_ORIENT_TO_EDGES[piece, orient][direction]
x1, y1, is_internal = \
self.get_adj_pos(x0, y0, direction,
return_is_internal=True)
piece, orient = self.get_piece_orient(x1, y1)
direction = (direction + 2) % 4
edge1 = self.PIECE_ORIENT_TO_EDGES[piece, orient][direction]
return edge0, edge1, is_internal
def check_edge_pair(self, x, y, direction, if_filled=False):
"""Check the edge pair's validity around (x, y) in direction.
If if_filled, then only check the edge pair if the base edge is filled.
"""
e0, e1, is_internal = self.get_edge_pair(x, y, direction)
if if_filled and not e0: return True
if not is_internal and not self.toroidal:
return not e0 and not e1
return e0 == e1
def check_piece(self, x, y, if_filled=True):
"""Check the validity of edge pairs around (x, y).
if_filled is passed on to check_edge_pair
"""
for direction in self.DIRECTIONS:
if not self.check_edge_pair(x, y, direction, if_filled):
return False
return True
def is_solved(self):
"""Check whether the puzzle is in a solved state."""
for x in range(self.X):
for y in range(self.Y):
if not self.check_edge_pair(x, y, "RIGHT"):
return False
if not self.check_edge_pair(x, y, "DOWN"):
return False
return True
class ooPlay:
"""Encapsulates an oo game instance.
Renders and interacts with an ooPuzzle instance using curses.
"""
def __init__(self, screen):
"""Create a new ooPlay instance.
Arguments.
scr : curses screen object used for display
"""
self.screen = screen
self.Y, self.X = self.screen.getmaxyx()
self.puzzle = ooPuzzle(self.X, self.Y-2)
self.puzzle.random_orients()
# set up colors
curses.start_color()
curses.init_color(curses.COLOR_GREEN, 0, 300, 0)
curses.init_pair(1, curses.COLOR_WHITE, curses.COLOR_GREEN)
curses.init_pair(2, curses.COLOR_RED, curses.COLOR_BLACK)
curses.init_pair(3, curses.COLOR_RED, curses.COLOR_GREEN)
# initialize flags
self.help_ind = 0
self.show_errors = False
self.inverted = False
self.toroidal = False
self.extra_hard = False
# draw the board state and help area
self.screen.clear()
self.display()
self.write()
# start the main loop
self.xpos, self.ypos = 0, 0
self.max_xpos = self.puzzle.X - 1
self.max_ypos = self.puzzle.Y - 1
self.keyloop()
def new_game(self):
"""Restarts an already-running ooPlay instance.
Flags are preserved, and toroidal is implemented.
toroidal is also passed to ooPuzzle at this point,
so self.toroidal == self.puzzle.toroidal afterwards.
"""
self.Y, self.X = self.screen.getmaxyx()
if self.toroidal:
self.X = (self.X // 2) * 2
self.Y = (self.Y // 2) * 2
X = self.X // 2
Y = (self.Y - 2) // 2
else:
X = self.X
Y = self.Y - 2
self.puzzle = ooPuzzle(X, Y, toroidal = self.toroidal)
if self.extra_hard:
while True:
for piece in self.puzzle.pieces.values():
if piece in [0, 5]:
break
else:
break
self.puzzle.set_pieces_from_game_id()
self.puzzle.random_orients()
# draw the board state and help area
self.screen.clear()
self.display()
self.write()
# return to the main loop
self.xpos, self.ypos = 0, 0
self.max_xpos = self.puzzle.X * (1 + self.toroidal) - 1
self.max_ypos = self.puzzle.Y * (1 + self.toroidal) - 1
PIECE_ORIENT_TO_STRING = \
[" ",
"╸╵╺╷",
"┙┕┍┑",
"━│━│",
"┝┯┥┷",
"┿┿┿┿"]
def display_subroutine(self, x, y, recursing=False):
"""Update one position on the board."""
#TODO: use inverted_pieces and not_inverted_pieces
# if self.inverted
piece, orient = self.puzzle.get_piece_orient(x, y)
string = self.PIECE_ORIENT_TO_STRING[piece][orient]
is_error = False
if self.show_errors:
is_error = not self.puzzle.check_piece(x, y)
color = curses.color_pair((x + y) % 2 + 2*is_error)
self.screen.addstr(y, x, string, color)
if self.puzzle.toroidal and not recursing:
X, Y = self.puzzle.X, self.puzzle.Y
x1 = (x + X) % (2*X)
y1 = (y + Y) % (2*Y)
self.display_subroutine(x1, y , recursing=True)
self.display_subroutine(x , y1, recursing=True)
self.display_subroutine(x1, y1, recursing=True)
def display_pos(self, x, y):
"""Update one position on the board, refresh screen."""
self.display_subroutine(x, y)
if self.show_errors:
for direction in self.puzzle.DIRECTIONS:
x1, y1 = self.puzzle.get_adj_pos(x, y, direction)
self.display_subroutine(x1, y1)
self.screen.refresh()
def display(self):
"""Update the state of the board, refresh screen."""
for x in range(self.puzzle.X):
for y in range(self.puzzle.Y):
self.display_subroutine(x, y)
self.screen.refresh()
pause_length = 80
def write(self, string=None, pause=None):
"""Write string to the bottom line.
if string is narrower than line:
centers string within the line
if string is wider than line:
scrolls through string
if a string is not given, then "H" is used
if pause is True, there will be a pause for reading
if pause is not given but a string is, there will be a pause
if neither a pause nor a string is given, there will not be a pause
ooPlay.pause_length
is the number of milliseconds per character to pause
"""
if string == None:
string = "H"
if pause == None:
pause = False
if pause == None:
pause = True
width = self.X - 1
color = curses.color_pair(int(pause))
border_line = self.X * "═"
self.screen.addstr(self.Y - 2, 0, border_line, color)
# writing a string that fits in the width
if len(string) <= width:
centered_string = string.center(width, " ")
self.screen.addstr(self.Y - 1, 0, centered_string, color)
self.screen.refresh()
if pause: curses.napms(self.pause_length * len(string))
curses.ungetch(0) # clear input
return
# scrolling through a wider string
strings = [string[i:i + width] for i in range(len(string) - width + 1)]
self.screen.addstr(self.Y - 1, 0, strings[0], color)
self.screen.refresh()
curses.napms(self.pause_length * width)
for s in strings:
self.screen.addstr(self.Y - 1, 0, s, color)
self.screen.refresh()
curses.napms(self.pause_length)
if pause: curses.napms(self.pause_length * width)
curses.ungetch(0) # clear input
#TODO: ungetch appears to not clear inputs as desired :/
def write_help(self):
"""Write one of the help messages."""
if self.help_ind == 0:
self.write("Help on controls.")
self.write("arrow or vi keys: move cursor")
self.write("space bar or return: rotates piece")
self.write("q: quit game")
self.write("n: new game")
self.write("r: randomize rotations")
self.write("s: toggle show errors")
self.write("t: toggle toroidal mode")
self.write("i: toggle inverted mode")
self.write("x: toggle extra hard mode")
self.write("The next help is game explanation.")
self.write()
if self.help_ind == 1:
self.write("Help on game.")
self.write("If game is not inverted," +
" the object is to have every line connect to another.")
self.write("If game is inverted," +
" the object is to have no two lines connected.")
self.write("If game is not toroidal," +
" the borders cannot have lines extending outwards.")
self.write("If game is toroidal," +
" the borders loop back" +
" and may connect to the opposite side.")
self.write("If game is extra hard," +
" then no completely (un)filled pieces are used.")
self.write("The next help is on controls.")
self.write()
self.help_ind += 1
self.help_ind %= 2
def success(self):
"""Write and respond to the win screen."""
self.write("You won!")
self.write("r n q", pause=False)
while True:
inp = self.screen.getch()
if inp in map(ord, 'QqNnRr'): break
return chr(inp)
def keyloop(self):
"""Wait for and parse keypress."""
while True:
self.screen.move(self.ypos, self.xpos)
inp = self.screen.getch()
# parse character input
if 0 < inp < 256:
inp = chr(inp)
if inp in " \n":
self.puzzle.rotate_cw(self.xpos, self.ypos)
self.display_pos(self.xpos, self.ypos)
if self.puzzle.is_solved():
inp = self.success()
# if inp is changed by self.success, we catch it here
if inp in "Qq":
self.write("Quit")
return
elif inp in "Rr":
self.write("Randomize")
self.puzzle.random_orients()
self.display()
self.write()
elif inp in "Nn":
self.write("New Game")
self.new_game()
elif inp in "H":
self.write_help()
elif inp in "Ss":
self.write("Do Not "*self.show_errors + "Show Errors")
self.show_errors = not self.show_errors
self.display()
self.write()
#TODO: add in show solution, with undo option
elif inp in "Ii":
self.write("Puzzle is now"
+ " NOT"*self.inverted
+ " inverted.")
self.inverted = not self.inverted
self.display()
self.write()
elif inp in "Tt":
self.write("Next new game will"
+ " NOT"*self.toroidal
+ " be toroidal.")
self.toroidal = not self.toroidal
self.write()
elif inp in "Xx":
self.write("Next new game will"
+ " NOT"*self.extra_hard
+ " be extra hard.")
self.extra_hard = not self.extra_hard
self.write()
# parse arrow/vi key input for motion
if inp in [curses.KEY_UP, "k"]:
if self.toroidal:
self.ypos = (self.ypos - 1) % (self.max_ypos + 1)
elif self.ypos > 0:
self.ypos -= 1
elif inp in [curses.KEY_DOWN, "j"]:
if self.toroidal:
self.ypos = (self.ypos + 1) % (self.max_ypos + 1)
elif self.ypos < self.max_ypos:
self.ypos += 1
elif inp in [curses.KEY_LEFT, "h"]:
if self.toroidal:
self.xpos = (self.xpos - 1) % (self.max_xpos + 1)
elif self.xpos > 0:
self.xpos -= 1
elif inp in [curses.KEY_RIGHT, "l"]:
if self.toroidal:
self.xpos = (self.xpos + 1) % (self.max_xpos + 1)
elif self.xpos < self.max_xpos:
self.xpos += 1
def main():
curses.wrapper(ooPlay)
if __name__ == "__main__":
main()
|