1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
|
import curses
import random
class ooPuzzle:
"""Encapsulates a oo puzzle state.
No rendering information is stored or interpreted here.
The following are all the get and set methods,
categorized with their inverses:
DATA CALLS
get_piece set_piece
get_orient set_orient
get_piece_orient set_piece_orient
HELPER METHODS
get_adj_pos
get_edge_pair
INITIALIZATION
set_data_from_game_id
set_data_from_edges
set_data_from_pieces
The following are all the user interface methods.
For more description, see their documentation.
rotate_cw : rotates a piece clockwise
random_orients : randomly orients all pieces
check_edge_pair : verifies an edge pair matches properly
check_piece : verifies edges on a piece connect to other pieces
is_solved : verifies all edges on all pieces are connected
All attributes are intended to be accessed through methods.
If direct access is necessary, here are their explanations:
(the following attributes are constant)
DIRECTIONS is a dictionary mapping:
each direction as a string
to a direction index in range(4)
DX_DY is a list mapping:
each direction index in range(4)
to a differential of form (dx, dy)
EDGES_TO_PIECE_ORIENT is a dictionary mapping:
each tuple of edge-filled statuses in order of direction
to a tuple of (piece id in range(6),
orientation direction in range(4))
PIECE_ORIENT_TO_EDGES is an inverse of the previous mapping.
(the following attributes are set by __init__)
X is an integer for the range of x-positions
Y is an integer for the range of y-positions
toroidal is a bool indicating whether
the border of the puzzle loops back to the opposite side
game_id is an integer
It uniquely corresponds to the solution in edges.
if toroidal: in range(2**( 2*X*Y ))
if not toroidal: in range(2**( (X-1)*Y + X*(Y-1) ))
A solution is stored in vert_edges and horiz_edges knowing this:
Adjacent edges in a solution must be
either both filled or both unfilled,
and so a bit of data is assigned to each pair.
vert_edges is the dictionary for vertical pairs
key: (x, row)
x: the usual x-coordinate of the piece
row: the y-coordinate or y+1, depending on whether
you want the pair above or below the piece
: row == 0 and row == self.Y are border edges
so it's good to think of row as 1-indexed
horiz_edges is the dictionary for horizontal pairs
key: (col, y)
col: the x-coord or x+1, same as row but left or right
y: the usual y-coord
pieces is a dictionary mapping:
each position of form (x in range(self.X),
y in range(self.Y))
to a piece id in range(6)
orients is a dictionary mapping:
each position of form (x in range(self.X),
y in range(self.Y))
to a direction index in range(4)
inverted_pieces is a closely related mapping to pieces,
where all edges swap filled state
NOT IMPLEMENTED
not_inverted_pieces is similar, but only swaps border edges
NOT IMPLEMENTED
"""
def __init__(self, X, Y, game_id=None, toroidal=False):
"""Create a new ooPuzzle instance.
Arguments.
X,Y : horizontal and vertical size of the puzzle
game_id : int corresponding to solution
: if None, a random game_id is generated
toroidal : bool for looping around the end of the puzzle
"""
self.X, self.Y = X, Y
self.game_id = game_id
self.toroidal = toroidal
self.horiz_edges = {}
self.vert_edges = {}
self.pieces = {}
self.orients = {}
self.set_data_from_game_id(random_game_id = (game_id == None))
####
#
# The following are constants for converting between various data sets.
#
####
# Changing conceptual directions into indices.
DIRECTIONS = {'LEFT' : 0,
'UP' : 1,
'RIGHT': 2,
'DOWN' : 3}
# Changing direction indices into (dx, dy) pairs.
DX_DY = [(-1, 0),
( 0, -1),
( 1, 0),
( 0, 1)]
# Given piece id and orientation direction,
# return edge-filled status for each direction.
PIECE_ORIENT_TO_EDGES = { (0, 0) : (0, 0, 0, 0),
(0, 1) : (0, 0, 0, 0),
(0, 2) : (0, 0, 0, 0),
(0, 3) : (0, 0, 0, 0),
(1, 0) : (1, 0, 0, 0),
(1, 1) : (0, 1, 0, 0),
(1, 2) : (0, 0, 1, 0),
(1, 3) : (0, 0, 0, 1),
(2, 0) : (1, 1, 0, 0),
(2, 1) : (0, 1, 1, 0),
(2, 2) : (0, 0, 1, 1),
(2, 3) : (1, 0, 0, 1),
(3, 0) : (1, 0, 1, 0),
(3, 1) : (0, 1, 0, 1),
(3, 2) : (1, 0, 1, 0),
(3, 3) : (0, 1, 0, 1),
(4, 0) : (0, 1, 1, 1),
(4, 1) : (1, 0, 1, 1),
(4, 2) : (1, 1, 0, 1),
(4, 3) : (1, 1, 1, 0),
(5, 0) : (1, 1, 1, 1),
(5, 1) : (1, 1, 1, 1),
(5, 2) : (1, 1, 1, 1),
(5, 3) : (1, 1, 1, 1) }
# One choice of inverse of the previous dictionary.
EDGES_TO_PIECE_ORIENT = { (0, 0, 0, 0) : (0, 0),
(1, 0, 0, 0) : (1, 0),
(0, 1, 0, 0) : (1, 1),
(0, 0, 1, 0) : (1, 2),
(0, 0, 0, 1) : (1, 3),
(1, 1, 0, 0) : (2, 0),
(0, 1, 1, 0) : (2, 1),
(0, 0, 1, 1) : (2, 2),
(1, 0, 0, 1) : (2, 3),
(1, 0, 1, 0) : (3, 0),
(0, 1, 0, 1) : (3, 1),
(0, 1, 1, 1) : (4, 0),
(1, 0, 1, 1) : (4, 1),
(1, 1, 0, 1) : (4, 2),
(1, 1, 1, 0) : (4, 3),
(1, 1, 1, 1) : (5, 0) }
####
#
# The following get and set methods are low-level data calls,
# and force the input positions into the appropriate range.
#
####
def get_piece(self, x, y):
x %= self.X
y %= self.Y
return self.pieces[x, y]
def get_orient(self, x, y):
x %= self.X
y %= self.Y
return self.orients[x, y]
def get_piece_orient(self, x, y):
x %= self.X
y %= self.Y
return self.pieces[x, y], self.orients[x, y]
def set_piece(self, x, y, value):
x %= self.X
y %= self.Y
self.pieces[x, y] = value
def set_orient(self, x, y, value):
x %= self.X
y %= self.Y
self.orients[x, y] = value
def set_piece_orient(self, x, y, value):
x %= self.X
y %= self.Y
self.pieces[x, y], self.orients[x, y] = value
####
#
# The following two get methods are helper methods.
#
# get_adj_pos is low-level, forcing inputs into the appropriate range.
# get_edge_pair is high-level, using low-level methods when needed.
#
####
def get_adj_pos(self, x0, y0, direction,
return_is_internal=False):
"""Returns the position adjacent to (x0, y0) in direction.
direction may be any string or integer in the dictionary
self.DIRECTIONS (case insensitive)
If return_is_internal, then a third output is returned,
a bool for whether both edges are internal.
(If false, then the edges are across a border.)
"""
x0 %= self.X
y0 %= self.Y
if type(direction) is str:
direction = self.DIRECTIONS[direction.upper()]
dx, dy = self.DX_DY[direction]
x1 = (x0 + dx) % self.X
y1 = (y0 + dy) % self.Y
if return_is_internal:
is_internal = (
x0 + dx == x1 and
y0 + dy == y1 )
return x1, y1, is_internal
return x1, y1
def get_edge_pair(self, x0, y0, direction):
"""Returns the edge pair's filled status in direction and is_internal.
direction may be any string or integer in the dictionary
self.DIRECTIONS (case insensitive)
The first output is the status of the edge of (x0, y0) in direction.
The second output is the status of the adjacent edge,
that is, of the piece adjacent to (x0, y0) in direction,
the status of the edge in the opposite direction.
The third output is a bool for whether both edges are internal.
(If false, then the edges are across a border.)
"""
if type(direction) is str:
direction = self.DIRECTIONS[direction.upper()]
piece, orient = self.get_piece_orient(x0, y0)
edge0 = self.PIECE_ORIENT_TO_EDGES[piece, orient][direction]
x1, y1, is_internal = \
self.get_adj_pos(x0, y0, direction,
return_is_internal=True)
piece, orient = self.get_piece_orient(x1, y1)
direction = (direction + 2) % 4
edge1 = self.PIECE_ORIENT_TO_EDGES[piece, orient][direction]
return edge0, edge1, is_internal
####
#
# The following get and set methods are for initialization.
#
# They allow any of the following three data sets to set the other two:
# game_id : self.game_id : int
# edges : self.horiz_edges, self.vert_edges : dicts
# pieces : self.pieces, self.orients : dicts
#
####
def set_data_from_edges(self, data='pieces and game_id'):
"""Update pieces and/or game_id from edges.
data is an input in case you want to suppress calculation
It should be one of ['pieces', 'game_id', 'pieces and game_id']
"""
if 'pieces' in data:
for x in range(self.X):
for y in range(self.Y):
left = self.horiz_edges[x , y]
right = self.horiz_edges[x+1, y]
up = self.vert_edges[x, y ]
down = self.vert_edges[x, y+1]
piece, orient = \
self.EDGES_TO_PIECE_ORIENT[left, up, right, down]
self.pieces [x, y] = piece
self.orients[x, y] = orient
if 'game_id' in data:
game_id = 0
exp = 0
# compute:
# n_horiz, the number of horizontal edge pairs
# n_vert, the number of vertical edge pairs
shift = -int(not self.toroidal)
n_col = self.X + shift
n_row = self.Y + shift
n_horiz = n_col * self.Y
n_vert = self.X * n_row
# get the edges determined by game_id
for i in range(n_vert):
row, x = divmod(i, self.X)
bit = self.vert_edges[x, row+1]
game_id += 2**exp * bit
exp += 1
for i in range(n_horiz):
col, y = divmod(i, self.Y)
bit = self.horiz_edges[col+1, y]
game_id += 2**exp * bit
exp += 1
self.game_id = game_id
def set_data_from_pieces(self):
"""Update edges and game_id with current pieces.
pieces must be in a solution state, i.e.,
self.is_solved() must return True
"""
if not self.is_solved():
raise ValueError("puzzle is not in a solved state")
for x, y in self.pieces:
piece = self.pieces [x, y]
orient = self.orients[x, y]
left, right, up, down = \
self.PIECE_ORIENT_TO_EDGES[piece, orient]
self.horiz_edges[x , y] = left
self.horiz_edges[x+1, y] = right
self.vert_edges[x, y ] = up
self.vert_edges[x, y+1] = down
set_data_from_edges(data='game_id')
def set_data_from_game_id(self, random_game_id=False):
"""Update edges and pieces with current game_id.
if random_game_id,
then a random game_id is chosen from the appropriate range,
and pieces are set from that
"""
# compute:
# n_horiz, the number of horizontal edge pairs
# n_vert, the number of vertical edge pairs
#
# generate random game_id if needed
shift = -int(not self.toroidal)
n_col = self.X + shift
n_row = self.Y + shift
n_horiz = n_col * self.Y
n_vert = self.X * n_row
if random_game_id:
self.game_id = random.randrange(0, 2**(n_horiz + n_vert))
# set the right and bottom border edges
# if toroidal, these will be overwritten in the next step
for x in range(self.X):
self.vert_edges[x, self.Y] = 0
for y in range(self.Y):
self.horiz_edges[self.X, y] = 0
# set the edges determined by game_id
game_id = self.game_id
for i in range(n_vert):
row, x = divmod(i, self.X)
game_id, bit = divmod(game_id, 2)
self.vert_edges[x, row+1] = bit
for i in range(n_horiz):
col, y = divmod(i, self.Y)
game_id, bit = divmod(game_id, 2)
self.horiz_edges[col+1, y] = bit
# make the left and top border edges match the opposite sides
for y in range(self.Y):
self.horiz_edges[0, y] = self.horiz_edges[self.X, y]
for x in range(self.X):
self.vert_edges[x, 0] = self.vert_edges[x, self.Y]
# set the pieces from the edges
self.set_data_from_edges(data='pieces')
####
#
# The rest of the methods are for user interface.
#
####
def rotate_cw(self, x, y, turns=1):
"""Rotates the piece at (x, y) by clockwise turns."""
o = self.get_orient(x, y)
o = (o + turns) % 4
self.set_orient(x, y, o)
def random_orients(self):
"""Randomly rotate the current pieces."""
for x in range(self.X):
for y in range(self.Y):
self.set_orient(x, y, random.randrange(4))
def check_edge_pair(self, x, y, direction, if_filled=False):
"""Check the edge pair's validity around (x, y) in direction.
If if_filled, then only check the edge pair if the base edge is filled.
"""
e0, e1, is_internal = self.get_edge_pair(x, y, direction)
if if_filled and not e0: return True
if not is_internal and not self.toroidal:
return not e0 and not e1
return e0 == e1
def check_piece(self, x, y, if_filled=True):
"""Check the validity of edge pairs around (x, y).
if_filled is passed on to check_edge_pair
"""
for direction in self.DIRECTIONS:
if not self.check_edge_pair(x, y, direction, if_filled):
return False
return True
def is_solved(self):
"""Check whether the puzzle is in a solved state."""
for x in range(self.X):
for y in range(self.Y):
if not self.check_edge_pair(x, y, "RIGHT"):
return False
if not self.check_edge_pair(x, y, "DOWN"):
return False
return True
class ooPlay:
"""Encapsulates an oo game instance.
Renders and interacts with an ooPuzzle instance using curses.
"""
def __init__(self, screen):
"""Create a new ooPlay instance.
Arguments.
screen : curses screen object used for display
"""
self.screen = screen
self.Y, self.X = self.screen.getmaxyx()
self.puzzle = ooPuzzle(self.X, self.Y-2)
self.puzzle.random_orients()
# set up colors
curses.start_color()
if curses.can_change_color():
curses.init_color(curses.COLOR_GREEN, 0, 300, 0)
curses.init_color(curses.COLOR_BLUE, 0, 0, 300)
def color_pair(n):
fg = curses.COLOR_WHITE
bg = curses.COLOR_BLACK
n, bit = divmod(n, 2)
if bit: bg = curses.COLOR_GREEN # for checkering
n, bit = divmod(n, 2)
if bit: bg = curses.COLOR_BLUE # for cursor
n, bit = divmod(n, 2)
if bit: fg = curses.COLOR_YELLOW # for fixed
n, bit = divmod(n, 2)
if bit: fg = curses.COLOR_RED # for showing errors
return fg, bg
for n in range(1, 2**4):
curses.init_pair(n, *color_pair(n))
# initialize flags
self.inverted = False
self.toroidal = False
self.extra_hard = False
self.show_errors = False
self.fixed = {}
for position in self.puzzle.pieces:
self.fixed[position] = False
# draw the board state and help area
self.screen.clear()
self.display()
self.write()
curses.curs_set(0)
# start the main loop
self.xpos, self.ypos = 0, 0
self.max_xpos = self.puzzle.X - 1
self.max_ypos = self.puzzle.Y - 1
self.keyloop()
def new_game(self):
"""Restarts an already-running ooPlay instance.
Flags are preserved, and toroidal is implemented.
toroidal is also passed to ooPuzzle at this point,
so self.toroidal == self.puzzle.toroidal afterwards.
"""
self.Y, self.X = self.screen.getmaxyx()
if self.toroidal:
self.X = (self.X // 2) * 2
self.Y = (self.Y // 2) * 2
X = self.X // 2
Y = (self.Y - 2) // 2
else:
X = self.X
Y = self.Y - 2
self.puzzle = ooPuzzle(X, Y, toroidal = self.toroidal)
if self.extra_hard: self.make_extra_hard()
self.puzzle.random_orients()
# reset some flags
self.show_errors = False
for position in self.puzzle.pieces:
self.fixed[position] = False
# draw the board state and help area
self.screen.clear()
self.display()
self.write()
# return to the main loop
self.xpos, self.ypos = 0, 0
self.max_xpos = self.puzzle.X * (1 + self.toroidal) - 1
self.max_ypos = self.puzzle.Y * (1 + self.toroidal) - 1
def make_extra_hard(self):
"""Returns True unless it successfully makes self.puzzle extra hard.
TODO: This implementation of extra_hard is not uniformly random.
TODO: This implementation is for toroidal mode only.
"""
try_again = False
X = self.puzzle.X
Y = self.puzzle.Y
for x in range(X):
for y in range(Y):
piece = self.puzzle.get_piece(x, y)
if piece not in [0, 5]: continue
bit = random.randrange(0, 2)
if bit:
x += 1
self.puzzle.horiz_edges[x, y] = (piece == 0)
if x == X:
self.puzzle.horiz_edges[0, y] = (piece == 0)
try_again = True
else:
y += 1
self.puzzle.vert_edges[x, y] = (piece == 0)
if y == Y:
self.puzzle.vert_edges[x, 0] = (piece == 0)
try_again = True
self.puzzle.set_data_from_edges()
if try_again: self.make_extra_hard()
PIECE_ORIENT_TO_STRING = \
[" ",
"╸╵╺╷",
"┙┕┍┑",
"━│━│",
"┝┯┥┷",
"┿┿┿┿"]
def is_fixed(self, x, y):
x %= self.puzzle.X
y %= self.puzzle.Y
return self.fixed[x, y]
def toggle_fixed(self, x, y):
x %= self.puzzle.X
y %= self.puzzle.Y
self.fixed[x, y] = not self.fixed[x, y]
def display_subroutine(self, x, y, recursing=False, cursor=None):
"""Update one position on the board."""
#TODO: use inverted_pieces and not_inverted_pieces
# if self.inverted
# compute string
piece, orient = self.puzzle.get_piece_orient(x, y)
string = self.PIECE_ORIENT_TO_STRING[piece][orient]
# compute color
is_checker = (x + y) % 2
is_cursor = bool(cursor)
is_fixed = self.is_fixed(x, y)
is_error = False
if self.show_errors:
is_error = not self.puzzle.check_piece(x, y)
color_val = (1*is_checker+
2*is_cursor +
4*is_fixed +
8*is_error )
color = curses.color_pair(color_val)
# add string of color
self.screen.addstr(y, x, string, color)
# recurse to equivalent toroidal positions if needed
if self.puzzle.toroidal and not recursing:
X, Y = self.puzzle.X, self.puzzle.Y
x1 = (x + X) % (2*X)
y1 = (y + Y) % (2*Y)
self.display_subroutine(x1, y , recursing=True, cursor=cursor)
self.display_subroutine(x , y1, recursing=True, cursor=cursor)
self.display_subroutine(x1, y1, recursing=True, cursor=cursor)
def display_pos(self, x, y, cursor=None):
"""Update one position on the board, refresh screen.
Updates adjacent positions when moving the cursor.
"""
self.display_subroutine(x, y, cursor=cursor)
if self.show_errors or cursor:
for direction in self.puzzle.DIRECTIONS:
x1, y1 = self.puzzle.get_adj_pos(x, y, direction)
self.display_subroutine(x1, y1)
self.screen.refresh()
def display(self):
"""Update the state of the board, refresh screen."""
for x in range(self.puzzle.X):
for y in range(self.puzzle.Y):
self.display_subroutine(x, y)
self.screen.refresh()
pause_length = 80
def get_input(self, options, delay=-1):
"""Waits for input to match an option, returns matched option.
options must be an iterable of strings and ints.
Each character in each string and each int are checked against.
If the input matches any character in a string,
then the character is returned instead of the ordinal.
delay is in units of self.pause_length,
the standard delay per char for the class.
delay may be an integer or float.
If delay is negative, then input is blocking.
If nonnegative, then input is non-blocking,
but keeps waiting if the input is not in options.
Implementation is such that keypresses other than
those in options can shorten or lengthen the pause,
but the pause is capped at twice the intended delay.
"""
options = list(options)
chars = []
ords = []
for option in options:
if type(option) is str:
chars.extend(list(option))
if type(option) is int:
ords.append(option)
breaks = list(map(ord, chars)) + ords
if delay == -1:
while True:
inp = self.screen.getch()
if inp in breaks:
break
else:
breaks.append(-1)
pause = int(self.pause_length * delay)
self.screen.timeout(pause)
while True:
inp = self.screen.getch()
if inp in breaks: break
pause //= 2
self.screen.timeout(pause)
self.screen.timeout(-1)
if inp in map(ord, chars):
return chr(inp)
return inp
def write(self, string=None, pause=None):
"""Write string to the bottom line.
if string is narrower than line:
centers string within the line
if string is wider than line:
scrolls through string
if a string is not given, then "H" is used
if pause is True, there will be a pause for reading at the end
if pause is not given but a string is, there will be a pause
if neither a pause nor a string is given, there will not be a pause
ooPlay.pause_length
is the number of milliseconds per character to pause
"""
if string == None:
string = "H"
if pause == None:
pause = False
if pause == None:
pause = True
width = self.X - 1
color = curses.color_pair(int(pause))
border_line = self.X * "═"
self.screen.addstr(self.Y - 2, 0, border_line, color)
# writing a string that fits in the width
if len(string) <= width:
centered_string = string.center(width, " ")
self.screen.addstr(self.Y - 1, 0, centered_string, color)
self.screen.refresh()
if pause:
if -1 != self.get_input(" ", delay=2*len(string)): return
return
# scrolling through a wider string
strings = [string[i:i + width] for i in range(len(string) - width + 1)]
self.screen.addstr(self.Y - 1, 0, strings[0], color)
self.screen.refresh()
if -1 != self.get_input(" ", delay=width): return
for s in strings:
self.screen.addstr(self.Y - 1, 0, s, color)
self.screen.refresh()
if -1 != self.get_input(" ", delay=1): return
if pause:
if -1 != self.get_input(" ", delay=width): return
def write_menu(self, string, controls=[]):
"""Writes string, waits for acceptable input, returns upper input.
Inputs are allowed to be:
any upper case character in string,
any lower case version of those characters, or
any element of controls.
the spacebar (on which the text is redisplayed)
Returns the matched input, made upper case if matched from string.
A common setting for controls contains:
'\n' for exiting menu
curses.KEY_UP for backing up one menu
The spacebar handling can be overwritten by adding ' ' to controls.
"""
options = [char + char.lower() for char in string if char.isupper()]
options.extend(controls)
options.append(' ')
while True:
self.write(string, pause=False)
inp = self.get_input(options)
if inp != ' ':
break
if inp in controls:
return inp
return inp.upper()
def menu_system(self, string_tree, up_key=curses.KEY_UP, out_key='\n'):
"""Runs a system of menus configured by string_tree.
string_tree must be a tuple with:
a string to be passed to write_menu
a dictionary with a key per upper case letter in string, where:
the key is the upper case letter as a string
the value is a string_tree
A string_tree that ends a path is a tuple with:
a string that has no upper case characters
an empty dictionary
Each string tree is parsed in the same way,
where the string is written with write_menu,
and choosing an option results in opening a submenu
given by the corresponding dictionary item.
Pressing up_key results in going up to the parent menu.
Pressing out_key results in exiting the menu (return).
"""
parents = []
while True:
string, responses = string_tree
inp = self.write_menu(string, controls=[up_key, out_key])
if inp in responses:
parents.append(string_tree)
string_tree = responses[inp]
elif inp == up_key and parents:
string_tree = parents.pop()
elif inp == out_key or not parents:
return
def write_help(self):
"""Write the help menu."""
self.write("use spacebar to skip or repeat a message")
self.write("use the capital letter to make a selection")
self.write("use the up key to return to a previous menu")
self.write("use return to exit the help menu")
help_menu = \
("Controls or Gameplay?",
{"C": ("Move cursor | Rotations | Game | Toggles",
{"M": ("use arrow or vi keys (hjkl) to move the cursor",
{}),
"R": ("rotate Piece | Fix piece | Randomize",
{"P": ("use space bar or return to rotate a piece",
{}),
"F": ("use f to fix a piece's rotation",
{}),
"R": ("use r to randomize all pieces," +
" including fixed",
{})}
),
"G": ("New | Quit | Solve",
{"N": ("use n to start a new game",
{}),
"Q": ("use q to quit the program",
{}),
"S": ("use S to show a solution",
{})}
),
"T": ("Show errors | Inverted | Toroidal | eXtra hard",
{"S": ("use s to show/hide errors",
{}),
"I": ("use i to toggle inverted mode",
{}),
"T": ("use t to toggle toroidal on next new game",
{}),
"X": ("use x to toggle extra hard on next new game",
{})}
)}
),
"G": ("Basic play | if Inverted | if Toroidal | if eXtra hard",
{"B": ("the object is to connect every line to another," +
" where no line should extend to a border," +
" and every possible piece may be in the puzzle",
{}),
"I": ("if inverted, the object changes to ensure" +
" every line is not connected to any other," +
" and border edges do not matter",
{}),
"T": ("if toroidal, the object changes so that" +
" the borders loop back, that is," +
" rightmost pieces may connect to leftmost pieces"
" and same with topmost and bottommost",
{}),
"X": ("if extra hard, the object is the same," +
" but when generating the puzzle," +
" no completely filled or unfilled pieces are used",
{})}
)}
)
self.menu_system(help_menu)
self.write()
def keyloop(self):
"""Wait for and parse keypress."""
while True:
self.display_pos(self.xpos, self.ypos, cursor=True)
inp = self.screen.getch()
# parse character input
if 0 < inp < 256:
inp = chr(inp)
if inp in " \n":
if self.is_fixed(self.xpos, self.ypos):
self.write("fixed piece")
self.write()
continue
self.puzzle.rotate_cw(self.xpos, self.ypos)
self.display_pos(self.xpos, self.ypos)
if self.puzzle.is_solved():
self.write("You won!")
menu = "Randomize | New game | Quit game"
inp = self.write_menu(menu)
# if inp is changed on a solved puzzle, we catch it here
if inp in "Qq":
self.write("quit")
return
elif inp in "Rr":
self.write("randomize")
for position in self.fixed:
self.fixed[position] = False
self.puzzle.random_orients()
self.display()
self.write()
elif inp in "Nn":
self.write("new game")
self.new_game()
elif inp in "H":
self.write_help()
elif inp in "S":
self.write("show a solution")
for position in self.fixed:
self.fixed[position] = False
self.puzzle.set_data_from_edges(data='pieces')
self.display()
self.write()
elif inp in "s":
self.write("do NOT "*self.show_errors + "show errors")
self.show_errors = not self.show_errors
self.display()
self.write()
#TODO: add in an undo button
elif inp in "Ii":
self.write("puzzle is now"
+ " NOT"*self.inverted
+ " inverted")
self.inverted = not self.inverted
self.display()
self.write()
elif inp in "Tt":
self.write("next new game will"
+ " NOT"*self.toroidal
+ " be toroidal")
self.toroidal = not self.toroidal
self.write()
elif inp in "Xx":
self.write("next new game will"
+ " NOT"*self.extra_hard
+ " be extra hard")
self.extra_hard = not self.extra_hard
self.write()
elif inp in "Ff":
self.toggle_fixed(self.xpos, self.ypos)
self.display_pos(self.xpos, self.ypos)
# parse arrow/vi key input for motion
if inp in [curses.KEY_UP, "k"]:
if self.toroidal:
self.ypos = (self.ypos - 1) % (self.max_ypos + 1)
elif self.ypos > 0:
self.ypos -= 1
elif inp in [curses.KEY_DOWN, "j"]:
if self.toroidal:
self.ypos = (self.ypos + 1) % (self.max_ypos + 1)
elif self.ypos < self.max_ypos:
self.ypos += 1
elif inp in [curses.KEY_LEFT, "h"]:
if self.toroidal:
self.xpos = (self.xpos - 1) % (self.max_xpos + 1)
elif self.xpos > 0:
self.xpos -= 1
elif inp in [curses.KEY_RIGHT, "l"]:
if self.toroidal:
self.xpos = (self.xpos + 1) % (self.max_xpos + 1)
elif self.xpos < self.max_xpos:
self.xpos += 1
class ooStudy():
"""Studies oo puzzles of a particular size.
This class is not intended to be used. It is far too slow.
Instead, it is intended to be ported to a faster language.
"""
def __init__(self, X, Y, toroidal=False):
self.X = X
self.Y = Y
self.toroidal = toroidal
self.puzzles = []
def __call__(self):
"""Study each possible game id."""
X = self.X
Y = self.Y
if self.toroidal: upper_bound = 2**( 2*X*Y )
else: upper_bound = 2**( (X-1)*Y + X*(Y-1) )
for game_id in range(upper_bound):
new_puzzle = ooPuzzle(X, Y,
game_id=game_id, toroidal=self.toroidal)
for puzzle in self.puzzles:
if puzzle.pieces == new_puzzle.pieces:
puzzle.equivalent_ids.append(game_id)
return
new_puzzle.equivalent_ids = []
self.puzzles.append(new_puzzle)
def main():
curses.wrapper(ooPlay)
if __name__ == "__main__":
main()
|