1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
#
# I2C protocol decoder
#
#
# The Inter-Integrated Circuit (I2C) bus is a bidirectional, multi-master
# bus using two signals (SCL = serial clock line, SDA = serial data line).
#
# There can be many devices on the same bus. Each device can potentially be
# master or slave (and that can change during runtime). Both slave and master
# can potentially play the transmitter or receiver role (this can also
# change at runtime).
#
# Possible maximum data rates:
# - Standard mode: 100 kbit/s
# - Fast mode: 400 kbit/s
# - Fast-mode Plus: 1 Mbit/s
# - High-speed mode: 3.4 Mbit/s
#
# START condition (S): SDA = falling, SCL = high
# Repeated START condition (Sr): same as S
# STOP condition (P): SDA = rising, SCL = high
#
# All data bytes on SDA are exactly 8 bits long (transmitted MSB-first).
# Each byte has to be followed by a 9th ACK/NACK bit. If that bit is low,
# that indicates an ACK, if it's high that indicates a NACK.
#
# After the first START condition, a master sends the device address of the
# slave it wants to talk to. Slave addresses are 7 bits long (MSB-first).
# After those 7 bits, a data direction bit is sent. If the bit is low that
# indicates a WRITE operation, if it's high that indicates a READ operation.
#
# Later an optional 10bit slave addressing scheme was added.
#
# Documentation:
# http://www.nxp.com/acrobat/literature/9398/39340011.pdf (v2.1 spec)
# http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf (v3 spec)
# http://en.wikipedia.org/wiki/I2C
#
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Handle clock stretching.
# TODO: Handle combined messages / repeated START.
# TODO: Implement support for 7bit and 10bit slave addresses.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
#
# I2C output format:
#
# The output consists of a (Python) list of I2C "packets", each of which
# has an (implicit) index number (its index in the list).
# Each packet consists of a Python dict with certain key/value pairs.
#
# TODO: Make this a list later instead of a dict?
#
# 'type': (string)
# - 'S' (START condition)
# - 'Sr' (Repeated START)
# - 'AR' (Address, read)
# - 'AW' (Address, write)
# - 'DR' (Data, read)
# - 'DW' (Data, write)
# - 'P' (STOP condition)
# 'range': (tuple of 2 integers, the min/max samplenumber of this range)
# - (min, max)
# - min/max can also be identical.
# 'data': (actual data as integer ???) TODO: This can be very variable...
# 'ann': (string; additional annotations / comments)
#
# Example output:
# [{'type': 'S', 'range': (150, 160), 'data': None, 'ann': 'Foobar'},
# {'type': 'AW', 'range': (200, 300), 'data': 0x50, 'ann': 'Slave 4'},
# {'type': 'DW', 'range': (310, 370), 'data': 0x00, 'ann': 'Init cmd'},
# {'type': 'AR', 'range': (500, 560), 'data': 0x50, 'ann': 'Get stat'},
# {'type': 'DR', 'range': (580, 640), 'data': 0xfe, 'ann': 'OK'},
# {'type': 'P', 'range': (650, 660), 'data': None, 'ann': None}]
#
# Possible other events:
# - Error event in case protocol looks broken:
# [{'type': 'ERROR', 'range': (min, max),
# 'data': TODO, 'ann': 'This is not a Microchip 24XX64 EEPROM'},
# [{'type': 'ERROR', 'range': (min, max),
# 'data': TODO, 'ann': 'TODO'},
# - TODO: Make list of possible errors accessible as metadata?
#
# TODO: I2C address of slaves.
# TODO: Handle multiple different I2C devices on same bus
# -> we need to decode multiple protocols at the same time.
# TODO: range: Always contiguous? Splitted ranges? Multiple per event?
#
#
# I2C input format:
#
# signals:
# [[id, channel, description], ...] # TODO
#
# Example:
# {'id': 'SCL', 'ch': 5, 'desc': 'Serial clock line'}
# {'id': 'SDA', 'ch': 7, 'desc': 'Serial data line'}
# ...
#
# {'inbuf': [...],
# 'signals': [{'SCL': }]}
#
def decode(inbuf):
"""I2C protocol decoder"""
# FIXME: Get the data in the correct format in the first place.
inbuf = [ord(x) for x in inbuf]
# FIXME: This should be passed in as metadata, not hardcoded here.
metadata = {
'numchannels': 8,
'signals': {
'scl': {'ch': 5, 'name': 'SCL', 'desc': 'Serial clock line'},
'sda': {'ch': 7, 'name': 'SDA', 'desc': 'Serial data line'},
},
}
out = []
o = ack = d = ''
bitcount = data = 0
wr = startsample = -1
IDLE, START, ADDRESS, DATA = range(4)
state = IDLE
# Get the channel/probe number of the SCL/SDA signals.
scl_bit = metadata['signals']['scl']['ch']
sda_bit = metadata['signals']['sda']['ch']
# Get SCL/SDA bit values (0/1 for low/high) of the first sample.
s = inbuf[0]
oldscl = (s & (1 << scl_bit)) >> scl_bit
oldsda = (s & (1 << sda_bit)) >> sda_bit
# Loop over all samples.
# TODO: Handle LAs with more/less than 8 channels.
for samplenum, s in enumerate(inbuf[1:]): # We skip the first byte...
# Get SCL/SDA bit values (0/1 for low/high).
scl = (s & (1 << scl_bit)) >> scl_bit
sda = (s & (1 << sda_bit)) >> sda_bit
# TODO: Wait until the bus is idle (SDA = SCL = 1) first?
# START condition (S): SDA = falling, SCL = high
if (oldsda == 1 and sda == 0) and scl == 1:
o = {'type': 'S', 'range': (samplenum, samplenum),
'data': None, 'ann': None},
out.append(o)
state = ADDRESS
bitcount = data = 0
# Data latching by transmitter: SCL = low
elif (scl == 0):
pass # TODO
# Data sampling of receiver: SCL = rising
elif (oldscl == 0 and scl == 1):
if startsample == -1:
startsample = samplenum
bitcount += 1
# out.append("%d\t\tRECEIVED BIT %d: %d\n" % \
# (samplenum, 8 - bitcount, sda))
# Address and data are transmitted MSB-first.
data <<= 1
data |= sda
if bitcount != 9:
continue
# We received 8 address/data bits and the ACK/NACK bit.
data >>= 1 # Shift out unwanted ACK/NACK bit here.
ack = (sda == 1) and 'N' or 'A'
d = (state == ADDRESS) and (data & 0xfe) or data
if state == ADDRESS:
wr = (data & 1) and 1 or 0
state = DATA
o = {'type': state,
'range': (startsample, samplenum - 1),
'data': d, 'ann': None}
if state == ADDRESS and wr == 1:
o['type'] = 'AW'
elif state == ADDRESS and wr == 0:
o['type'] = 'AR'
elif state == DATA and wr == 1:
o['type'] = 'DW'
elif state == DATA and wr == 0:
o['type'] = 'DR'
out.append(o)
o = {'type': ack, 'range': (samplenum, samplenum),
'data': None, 'ann': None}
out.append(o)
bitcount = data = startsample = 0
startsample = -1
# STOP condition (P): SDA = rising, SCL = high
elif (oldsda == 0 and sda == 1) and scl == 1:
o = {'type': 'P', 'range': (samplenum, samplenum),
'data': None, 'ann': None},
out.append(o)
state = IDLE
wr = -1
# Save current SDA/SCL values for the next round.
oldscl = scl
oldsda = sda
# FIXME: Just for testing...
return str(out)
def register():
return {
'id': 'i2c',
'name': 'I2C',
'desc': 'Inter-Integrated Circuit (I2C) bus',
'inputformats': ['raw'],
'signalnames': {
'SCL': 'Serial clock line',
'SDA': 'Serial data line',
},
'outputformats': ['i2c'],
}
# Use psyco (if available) as it results in huge performance improvements.
try:
import psyco
psyco.bind(decode)
except ImportError:
pass
|