1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
from math import floor, ceil
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <rxtx>, <pdata>]
This is the list of <ptype>s and their respective <pdata> values:
- 'STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'DATA': This is always a tuple containing two items:
- 1st item: the (integer) value of the UART data. Valid values
range from 0 to 512 (as the data can be up to 9 bits in size).
- 2nd item: the list of individual data bits and their ss/es numbers.
- 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
- 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
- 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
- 'PARITY ERROR': The data is a tuple with two entries. The first one is
the expected parity value, the second is the actual parity value.
- TODO: Frame error?
The <rxtx> field is 0 for RX packets, 1 for TX packets.
'''
# Used for differentiating between the two data directions.
RX = 0
TX = 1
# Given a parity type to check (odd, even, zero, one), the value of the
# parity bit, the value of the data, and the length of the data (5-9 bits,
# usually 8 bits) return True if the parity is correct, False otherwise.
# 'none' is _not_ allowed as value for 'parity_type'.
def parity_ok(parity_type, parity_bit, data, num_data_bits):
# Handle easy cases first (parity bit is always 1 or 0).
if parity_type == 'zero':
return parity_bit == 0
elif parity_type == 'one':
return parity_bit == 1
# Count number of 1 (high) bits in the data (and the parity bit itself!).
ones = bin(data).count('1') + parity_bit
# Check for odd/even parity.
if parity_type == 'odd':
return (ones % 2) == 1
elif parity_type == 'even':
return (ones % 2) == 0
class SamplerateError(Exception):
pass
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 2
id = 'uart'
name = 'UART'
longname = 'Universal Asynchronous Receiver/Transmitter'
desc = 'Asynchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['uart']
optional_channels = (
# Allow specifying only one of the signals, e.g. if only one data
# direction exists (or is relevant).
{'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
{'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
)
options = (
{'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
{'id': 'num_data_bits', 'desc': 'Data bits', 'default': 8,
'values': (5, 6, 7, 8, 9)},
{'id': 'parity_type', 'desc': 'Parity type', 'default': 'none',
'values': ('none', 'odd', 'even', 'zero', 'one')},
{'id': 'parity_check', 'desc': 'Check parity?', 'default': 'yes',
'values': ('yes', 'no')},
{'id': 'num_stop_bits', 'desc': 'Stop bits', 'default': 1.0,
'values': (0.0, 0.5, 1.0, 1.5)},
{'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
'values': ('lsb-first', 'msb-first')},
{'id': 'format', 'desc': 'Data format', 'default': 'ascii',
'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
{'id': 'invert_rx', 'desc': 'Invert RX?', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'invert_tx', 'desc': 'Invert TX?', 'default': 'no',
'values': ('yes', 'no')},
)
annotations = (
('rx-data', 'RX data'),
('tx-data', 'TX data'),
('rx-start', 'RX start bits'),
('tx-start', 'TX start bits'),
('rx-parity-ok', 'RX parity OK bits'),
('tx-parity-ok', 'TX parity OK bits'),
('rx-parity-err', 'RX parity error bits'),
('tx-parity-err', 'TX parity error bits'),
('rx-stop', 'RX stop bits'),
('tx-stop', 'TX stop bits'),
('rx-warnings', 'RX warnings'),
('tx-warnings', 'TX warnings'),
('rx-data-bits', 'RX data bits'),
('tx-data-bits', 'TX data bits'),
)
annotation_rows = (
('rx-data', 'RX', (0, 2, 4, 6, 8)),
('rx-data-bits', 'RX bits', (12,)),
('rx-warnings', 'RX warnings', (10,)),
('tx-data', 'TX', (1, 3, 5, 7, 9)),
('tx-data-bits', 'TX bits', (13,)),
('tx-warnings', 'TX warnings', (11,)),
)
binary = (
('rx', 'RX dump'),
('tx', 'TX dump'),
('rxtx', 'RX/TX dump'),
)
def putx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
def putpx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
def putg(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
def putp(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
def putbin(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_bin, data)
def __init__(self, **kwargs):
self.samplerate = None
self.samplenum = 0
self.frame_start = [-1, -1]
self.startbit = [-1, -1]
self.cur_data_bit = [0, 0]
self.databyte = [0, 0]
self.paritybit = [-1, -1]
self.stopbit1 = [-1, -1]
self.startsample = [-1, -1]
self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
self.oldbit = [1, 1]
self.oldpins = [1, 1]
self.databits = [[], []]
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_bin = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# The width of one UART bit in number of samples.
self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
# Return true if we reached the middle of the desired bit, false otherwise.
def reached_bit(self, rxtx, bitnum):
# bitpos is the samplenumber which is in the middle of the
# specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
# (if used) or the first stop bit, and so on).
# The samples within bit are 0, 1, ..., (bit_width - 1), therefore
# index of the middle sample within bit window is (bit_width - 1) / 2.
bitpos = self.frame_start[rxtx] + (self.bit_width - 1) / 2.0
bitpos += bitnum * self.bit_width
if self.samplenum >= bitpos:
return True
return False
def reached_bit_last(self, rxtx, bitnum):
bitpos = self.frame_start[rxtx] + ((bitnum + 1) * self.bit_width)
if self.samplenum >= bitpos:
return True
return False
def wait_for_start_bit(self, rxtx, old_signal, signal):
# The start bit is always 0 (low). As the idle UART (and the stop bit)
# level is 1 (high), the beginning of a start bit is a falling edge.
if not (old_signal == 1 and signal == 0):
return
# Save the sample number where the start bit begins.
self.frame_start[rxtx] = self.samplenum
self.state[rxtx] = 'GET START BIT'
def get_start_bit(self, rxtx, signal):
# Skip samples until we're in the middle of the start bit.
if not self.reached_bit(rxtx, 0):
return
self.startbit[rxtx] = signal
# The startbit must be 0. If not, we report an error.
if self.startbit[rxtx] != 0:
self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
# TODO: Abort? Ignore rest of the frame?
self.cur_data_bit[rxtx] = 0
self.databyte[rxtx] = 0
self.startsample[rxtx] = -1
self.state[rxtx] = 'GET DATA BITS'
self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([rxtx + 2, ['Start bit', 'Start', 'S']])
def get_data_bits(self, rxtx, signal):
# Skip samples until we're in the middle of the desired data bit.
if not self.reached_bit(rxtx, self.cur_data_bit[rxtx] + 1):
return
# Save the sample number of the middle of the first data bit.
if self.startsample[rxtx] == -1:
self.startsample[rxtx] = self.samplenum
# Get the next data bit in LSB-first or MSB-first fashion.
if self.options['bit_order'] == 'lsb-first':
self.databyte[rxtx] >>= 1
self.databyte[rxtx] |= \
(signal << (self.options['num_data_bits'] - 1))
else:
self.databyte[rxtx] <<= 1
self.databyte[rxtx] |= (signal << 0)
self.putg([rxtx + 12, ['%d' % signal]])
# Store individual data bits and their start/end samplenumbers.
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
# Return here, unless we already received all data bits.
if self.cur_data_bit[rxtx] < self.options['num_data_bits'] - 1:
self.cur_data_bit[rxtx] += 1
return
self.state[rxtx] = 'GET PARITY BIT'
self.putpx(rxtx, ['DATA', rxtx,
(self.databyte[rxtx], self.databits[rxtx])])
b, f = self.databyte[rxtx], self.options['format']
if f == 'ascii':
c = chr(b) if b in range(30, 126 + 1) else '[%02X]' % b
self.putx(rxtx, [rxtx, [c]])
elif f == 'dec':
self.putx(rxtx, [rxtx, [str(b)]])
elif f == 'hex':
self.putx(rxtx, [rxtx, [hex(b)[2:].zfill(2).upper()]])
elif f == 'oct':
self.putx(rxtx, [rxtx, [oct(b)[2:].zfill(3)]])
elif f == 'bin':
self.putx(rxtx, [rxtx, [bin(b)[2:].zfill(8)]])
self.putbin(rxtx, (rxtx, bytes([b])))
self.putbin(rxtx, (2, bytes([b])))
self.databits = [[], []]
def get_parity_bit(self, rxtx, signal):
# If no parity is used/configured, skip to the next state immediately.
if self.options['parity_type'] == 'none':
self.state[rxtx] = 'GET STOP BITS'
return
# Skip samples until we're in the middle of the parity bit.
if not self.reached_bit(rxtx, self.options['num_data_bits'] + 1):
return
self.paritybit[rxtx] = signal
self.state[rxtx] = 'GET STOP BITS'
if parity_ok(self.options['parity_type'], self.paritybit[rxtx],
self.databyte[rxtx], self.options['num_data_bits']):
self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
self.putg([rxtx + 4, ['Parity bit', 'Parity', 'P']])
else:
# TODO: Return expected/actual parity values.
self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
self.putg([rxtx + 6, ['Parity error', 'Parity err', 'PE']])
# TODO: Currently only supports 1 stop bit.
def get_stop_bits(self, rxtx, signal):
# Skip samples until we're in the middle of the stop bit(s).
skip_parity = 0 if self.options['parity_type'] == 'none' else 1
b = self.options['num_data_bits'] + 1 + skip_parity
if not self.reached_bit(rxtx, b):
return
self.stopbit1[rxtx] = signal
# Stop bits must be 1. If not, we report an error.
if self.stopbit1[rxtx] != 1:
self.putp(['INVALID STOPBIT', rxtx, self.stopbit1[rxtx]])
self.putg([rxtx + 10, ['Frame error', 'Frame err', 'FE']])
# TODO: Abort? Ignore the frame? Other?
self.state[rxtx] = 'WAIT FOR START BIT'
self.putp(['STOPBIT', rxtx, self.stopbit1[rxtx]])
self.putg([rxtx + 4, ['Stop bit', 'Stop', 'T']])
def decode(self, ss, es, data):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
for (self.samplenum, pins) in data:
# Note: Ignoring identical samples here for performance reasons
# is not possible for this PD, at least not in the current state.
# if self.oldpins == pins:
# continue
self.oldpins, (rx, tx) = pins, pins
if self.options['invert_rx'] == 'yes':
rx = not rx
if self.options['invert_tx'] == 'yes':
tx = not tx
# Either RX or TX (but not both) can be omitted.
has_pin = [rx in (0, 1), tx in (0, 1)]
if has_pin == [False, False]:
raise ChannelError('Either TX or RX (or both) pins required.')
# State machine.
for rxtx in (RX, TX):
# Don't try to handle RX (or TX) if not supplied.
if not has_pin[rxtx]:
continue
signal = rx if (rxtx == RX) else tx
if self.state[rxtx] == 'WAIT FOR START BIT':
self.wait_for_start_bit(rxtx, self.oldbit[rxtx], signal)
elif self.state[rxtx] == 'GET START BIT':
self.get_start_bit(rxtx, signal)
elif self.state[rxtx] == 'GET DATA BITS':
self.get_data_bits(rxtx, signal)
elif self.state[rxtx] == 'GET PARITY BIT':
self.get_parity_bit(rxtx, signal)
elif self.state[rxtx] == 'GET STOP BITS':
self.get_stop_bits(rxtx, signal)
# Save current RX/TX values for the next round.
self.oldbit[rxtx] = signal
|