1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack
from math import floor, ceil
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <rxtx>, <pdata>]
This is the list of <ptype>s and their respective <pdata> values:
- 'STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'DATA': This is always a tuple containing two items:
- 1st item: the (integer) value of the UART data. Valid values
range from 0 to 511 (as the data can be up to 9 bits in size).
- 2nd item: the list of individual data bits and their ss/es numbers.
- 'PARITYBIT': The data is the (integer) value of the parity bit (0/1).
- 'STOPBIT': The data is the (integer) value of the stop bit (0 or 1).
- 'INVALID STARTBIT': The data is the (integer) value of the start bit (0/1).
- 'INVALID STOPBIT': The data is the (integer) value of the stop bit (0/1).
- 'PARITY ERROR': The data is a tuple with two entries. The first one is
the expected parity value, the second is the actual parity value.
- 'BREAK': The data is always 0.
- 'FRAME': The data is always a tuple containing two items: The (integer)
value of the UART data, and a boolean which reflects the validity of the
UART frame.
- 'IDLE': The data is always 0.
The <rxtx> field is 0 for RX packets, 1 for TX packets.
'''
# Used for differentiating between the two data directions.
RX = 0
TX = 1
# Given a parity type to check (odd, even, zero, one), the value of the
# parity bit, the value of the data, and the length of the data (5-9 bits,
# usually 8 bits) return True if the parity is correct, False otherwise.
# 'none' is _not_ allowed as value for 'parity_type'.
def parity_ok(parity_type, parity_bit, data, data_bits):
if parity_type == 'ignore':
return True
# Handle easy cases first (parity bit is always 1 or 0).
if parity_type == 'zero':
return parity_bit == 0
elif parity_type == 'one':
return parity_bit == 1
# Count number of 1 (high) bits in the data (and the parity bit itself!).
ones = bin(data).count('1') + parity_bit
# Check for odd/even parity.
if parity_type == 'odd':
return (ones % 2) == 1
elif parity_type == 'even':
return (ones % 2) == 0
class SamplerateError(Exception):
pass
class ChannelError(Exception):
pass
class Ann:
RX_DATA, TX_DATA, RX_START, TX_START, RX_PARITY_OK, TX_PARITY_OK, \
RX_PARITY_ERR, TX_PARITY_ERR, RX_STOP, TX_STOP, RX_WARN, TX_WARN, \
RX_DATA_BIT, TX_DATA_BIT, RX_BREAK, TX_BREAK, RX_PACKET, TX_PACKET = \
range(18)
class Bin:
RX, TX, RXTX = range(3)
class Decoder(srd.Decoder):
api_version = 3
id = 'uart'
name = 'UART'
longname = 'Universal Asynchronous Receiver/Transmitter'
desc = 'Asynchronous, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['uart']
tags = ['Embedded/industrial']
optional_channels = (
# Allow specifying only one of the signals, e.g. if only one data
# direction exists (or is relevant).
{'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
{'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
)
options = (
{'id': 'baudrate', 'desc': 'Baud rate', 'default': 115200},
{'id': 'data_bits', 'desc': 'Data bits', 'default': 8,
'values': (5, 6, 7, 8, 9)},
{'id': 'parity', 'desc': 'Parity', 'default': 'none',
'values': ('none', 'odd', 'even', 'zero', 'one', 'ignore')},
{'id': 'stop_bits', 'desc': 'Stop bits', 'default': 1.0,
'values': (0.0, 0.5, 1.0, 1.5, 2.0)},
{'id': 'bit_order', 'desc': 'Bit order', 'default': 'lsb-first',
'values': ('lsb-first', 'msb-first')},
{'id': 'format', 'desc': 'Data format', 'default': 'hex',
'values': ('ascii', 'dec', 'hex', 'oct', 'bin')},
{'id': 'invert_rx', 'desc': 'Invert RX', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'invert_tx', 'desc': 'Invert TX', 'default': 'no',
'values': ('yes', 'no')},
{'id': 'sample_point', 'desc': 'Sample point (%)', 'default': 50},
{'id': 'rx_packet_delim', 'desc': 'RX packet delimiter (decimal)',
'default': -1},
{'id': 'tx_packet_delim', 'desc': 'TX packet delimiter (decimal)',
'default': -1},
{'id': 'rx_packet_len', 'desc': 'RX packet length', 'default': -1},
{'id': 'tx_packet_len', 'desc': 'TX packet length', 'default': -1},
)
annotations = (
('rx-data', 'RX data'),
('tx-data', 'TX data'),
('rx-start', 'RX start bit'),
('tx-start', 'TX start bit'),
('rx-parity-ok', 'RX parity OK bit'),
('tx-parity-ok', 'TX parity OK bit'),
('rx-parity-err', 'RX parity error bit'),
('tx-parity-err', 'TX parity error bit'),
('rx-stop', 'RX stop bit'),
('tx-stop', 'TX stop bit'),
('rx-warning', 'RX warning'),
('tx-warning', 'TX warning'),
('rx-data-bit', 'RX data bit'),
('tx-data-bit', 'TX data bit'),
('rx-break', 'RX break'),
('tx-break', 'TX break'),
('rx-packet', 'RX packet'),
('tx-packet', 'TX packet'),
)
annotation_rows = (
('rx-data-bits', 'RX bits', (Ann.RX_DATA_BIT,)),
('rx-data-vals', 'RX data', (Ann.RX_DATA, Ann.RX_START, Ann.RX_PARITY_OK, Ann.RX_PARITY_ERR, Ann.RX_STOP)),
('rx-warnings', 'RX warnings', (Ann.RX_WARN,)),
('rx-breaks', 'RX breaks', (Ann.RX_BREAK,)),
('rx-packets', 'RX packets', (Ann.RX_PACKET,)),
('tx-data-bits', 'TX bits', (Ann.TX_DATA_BIT,)),
('tx-data-vals', 'TX data', (Ann.TX_DATA, Ann.TX_START, Ann.TX_PARITY_OK, Ann.TX_PARITY_ERR, Ann.TX_STOP)),
('tx-warnings', 'TX warnings', (Ann.TX_WARN,)),
('tx-breaks', 'TX breaks', (Ann.TX_BREAK,)),
('tx-packets', 'TX packets', (Ann.TX_PACKET,)),
)
binary = (
('rx', 'RX dump'),
('tx', 'TX dump'),
('rxtx', 'RX/TX dump'),
)
idle_state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
def putx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
def putx_packet(self, rxtx, data):
s, halfbit = self.ss_packet[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_ann, data)
def putpx(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_python, data)
def putg(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_ann, data)
def putp(self, data):
s, halfbit = self.samplenum, self.bit_width / 2.0
self.put(s - floor(halfbit), s + ceil(halfbit), self.out_python, data)
def putgse(self, ss, es, data):
self.put(ss, es, self.out_ann, data)
def putpse(self, ss, es, data):
self.put(ss, es, self.out_python, data)
def putbin(self, rxtx, data):
s, halfbit = self.startsample[rxtx], self.bit_width / 2.0
self.put(s - floor(halfbit), self.samplenum + ceil(halfbit), self.out_binary, data)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.frame_start = [-1, -1]
self.frame_valid = [None, None]
self.cur_frame_bit = [None, None]
self.startbit = [-1, -1]
self.cur_data_bit = [0, 0]
self.datavalue = [0, 0]
self.paritybit = [-1, -1]
self.stopbits = [[], []]
self.startsample = [-1, -1]
self.state = ['WAIT FOR START BIT', 'WAIT FOR START BIT']
self.databits = [[], []]
self.break_start = [None, None]
self.packet_cache = [[], []]
self.ss_packet, self.es_packet = [None, None], [None, None]
self.idle_start = [None, None]
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.bw = (self.options['data_bits'] + 7) // 8
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# The width of one UART bit in number of samples.
self.bit_width = float(self.samplerate) / float(self.options['baudrate'])
def get_sample_point(self, rxtx, bitnum):
# Determine absolute sample number of a bit slot's sample point.
# Counts for UART bits start from 0 (0 = start bit, 1..x = data,
# x+1 = parity bit (if used) or the first stop bit, and so on).
# Accept a position in the range of 1-99% of the full bit width.
# Assume 50% for invalid input specs for backwards compatibility.
perc = self.options['sample_point'] or 50
if not perc or perc not in range(1, 100):
perc = 50
perc /= 100.0
bitpos = (self.bit_width - 1) * perc
bitpos += self.frame_start[rxtx]
bitpos += bitnum * self.bit_width
return bitpos
def wait_for_start_bit(self, rxtx, signal):
# Save the sample number where the start bit begins.
self.frame_start[rxtx] = self.samplenum
self.frame_valid[rxtx] = True
self.cur_frame_bit[rxtx] = 0
self.advance_state(rxtx, signal)
def get_start_bit(self, rxtx, signal):
self.startbit[rxtx] = signal
self.cur_frame_bit[rxtx] += 1
# The startbit must be 0. If not, we report an error and wait
# for the next start bit (assuming this one was spurious).
if self.startbit[rxtx] != 0:
self.putp(['INVALID STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([Ann.RX_WARN + rxtx, ['Frame error', 'Frame err', 'FE']])
self.frame_valid[rxtx] = False
es = self.samplenum + ceil(self.bit_width / 2.0)
self.putpse(self.frame_start[rxtx], es, ['FRAME', rxtx,
(self.datavalue[rxtx], self.frame_valid[rxtx])])
self.advance_state(rxtx, signal, fatal = True, idle = es)
return
# Reset internal state for the pending UART frame.
self.cur_data_bit[rxtx] = 0
self.datavalue[rxtx] = 0
self.paritybit[rxtx] = -1
self.stopbits[rxtx].clear()
self.startsample[rxtx] = -1
self.databits[rxtx].clear()
self.putp(['STARTBIT', rxtx, self.startbit[rxtx]])
self.putg([Ann.RX_START + rxtx, ['Start bit', 'Start', 'S']])
self.advance_state(rxtx, signal)
def handle_packet(self, rxtx):
d = 'rx' if (rxtx == RX) else 'tx'
delim = self.options[d + '_packet_delim']
plen = self.options[d + '_packet_len']
if delim == -1 and plen == -1:
return
# Cache data values until we see the delimiter and/or the specified
# packet length has been reached (whichever happens first).
if len(self.packet_cache[rxtx]) == 0:
self.ss_packet[rxtx] = self.startsample[rxtx]
self.packet_cache[rxtx].append(self.datavalue[rxtx])
if self.datavalue[rxtx] == delim or len(self.packet_cache[rxtx]) == plen:
self.es_packet[rxtx] = self.samplenum
s = ''
for b in self.packet_cache[rxtx]:
s += self.format_value(b)
if self.options['format'] != 'ascii':
s += ' '
if self.options['format'] != 'ascii' and s[-1] == ' ':
s = s[:-1] # Drop trailing space.
self.putx_packet(rxtx, [Ann.RX_PACKET + rxtx, [s]])
self.packet_cache[rxtx] = []
def get_data_bits(self, rxtx, signal):
# Save the sample number of the middle of the first data bit.
if self.startsample[rxtx] == -1:
self.startsample[rxtx] = self.samplenum
self.putg([Ann.RX_DATA_BIT + rxtx, ['%d' % signal]])
# Store individual data bits and their start/end samplenumbers.
s, halfbit = self.samplenum, int(self.bit_width / 2)
self.databits[rxtx].append([signal, s - halfbit, s + halfbit])
self.cur_frame_bit[rxtx] += 1
# Return here, unless we already received all data bits.
self.cur_data_bit[rxtx] += 1
if self.cur_data_bit[rxtx] < self.options['data_bits']:
return
# Convert accumulated data bits to a data value.
bits = [b[0] for b in self.databits[rxtx]]
if self.options['bit_order'] == 'msb-first':
bits.reverse()
self.datavalue[rxtx] = bitpack(bits)
self.putpx(rxtx, ['DATA', rxtx,
(self.datavalue[rxtx], self.databits[rxtx])])
b = self.datavalue[rxtx]
formatted = self.format_value(b)
if formatted is not None:
self.putx(rxtx, [rxtx, [formatted]])
bdata = b.to_bytes(self.bw, byteorder='big')
self.putbin(rxtx, [Bin.RX + rxtx, bdata])
self.putbin(rxtx, [Bin.RXTX, bdata])
self.handle_packet(rxtx)
self.databits[rxtx] = []
self.advance_state(rxtx, signal)
def format_value(self, v):
# Format value 'v' according to configured options.
# Reflects the user selected kind of representation, as well as
# the number of data bits in the UART frames.
fmt, bits = self.options['format'], self.options['data_bits']
# Assume "is printable" for values from 32 to including 126,
# below 32 is "control" and thus not printable, above 127 is
# "not ASCII" in its strict sense, 127 (DEL) is not printable,
# fall back to hex representation for non-printables.
if fmt == 'ascii':
if v in range(32, 126 + 1):
return chr(v)
hexfmt = "[{:02X}]" if bits <= 8 else "[{:03X}]"
return hexfmt.format(v)
# Mere number to text conversion without prefix and padding
# for the "decimal" output format.
if fmt == 'dec':
return "{:d}".format(v)
# Padding with leading zeroes for hex/oct/bin formats, but
# without a prefix for density -- since the format is user
# specified, there is no ambiguity.
if fmt == 'hex':
digits = (bits + 4 - 1) // 4
fmtchar = "X"
elif fmt == 'oct':
digits = (bits + 3 - 1) // 3
fmtchar = "o"
elif fmt == 'bin':
digits = bits
fmtchar = "b"
else:
fmtchar = None
if fmtchar is not None:
fmt = "{{:0{:d}{:s}}}".format(digits, fmtchar)
return fmt.format(v)
return None
def get_parity_bit(self, rxtx, signal):
self.paritybit[rxtx] = signal
self.cur_frame_bit[rxtx] += 1
if parity_ok(self.options['parity'], self.paritybit[rxtx],
self.datavalue[rxtx], self.options['data_bits']):
self.putp(['PARITYBIT', rxtx, self.paritybit[rxtx]])
self.putg([Ann.RX_PARITY_OK + rxtx, ['Parity bit', 'Parity', 'P']])
else:
# TODO: Return expected/actual parity values.
self.putp(['PARITY ERROR', rxtx, (0, 1)]) # FIXME: Dummy tuple...
self.putg([Ann.RX_PARITY_ERR + rxtx, ['Parity error', 'Parity err', 'PE']])
self.frame_valid[rxtx] = False
self.advance_state(rxtx, signal)
def get_stop_bits(self, rxtx, signal):
self.stopbits[rxtx].append(signal)
self.cur_frame_bit[rxtx] += 1
# Stop bits must be 1. If not, we report an error.
if signal != 1:
self.putp(['INVALID STOPBIT', rxtx, signal])
self.putg([Ann.RX_WARN + rxtx, ['Frame error', 'Frame err', 'FE']])
self.frame_valid[rxtx] = False
self.putp(['STOPBIT', rxtx, signal])
self.putg([Ann.RX_STOP + rxtx, ['Stop bit', 'Stop', 'T']])
# Postprocess the UART frame after all STOP bits were seen.
if len(self.stopbits[rxtx]) < self.options['stop_bits']:
return
self.advance_state(rxtx, signal)
def advance_state(self, rxtx, signal = None, fatal = False, idle = None):
# Advances the protocol decoder's internal state for all regular
# UART frame inspection. Deals with either edges, sample points,
# or other .wait() conditions. Also gracefully handles extreme
# undersampling. Each turn takes one .wait() call which in turn
# corresponds to at least one sample. That is why as many state
# transitions are done here as required within a single call.
frame_end = self.frame_start[rxtx] + self.frame_len_sample_count
if idle is not None:
# When requested by the caller, start another (potential)
# IDLE period after the caller specified position.
self.idle_start[rxtx] = idle
if fatal:
# When requested by the caller, don't advance to the next
# UART frame's field, but to the start of the next START bit
# instead.
self.state[rxtx] = 'WAIT FOR START BIT'
return
# Advance to the next UART frame's field that we expect. Cope
# with absence of optional fields. Force scan for next IDLE
# after the (optional) STOP bit field, so that callers need
# not deal with optional field presence. Also handles the cases
# where the decoder navigates to edges which are not strictly
# a field's sampling point.
if self.state[rxtx] == 'WAIT FOR START BIT':
self.state[rxtx] = 'GET START BIT'
return
if self.state[rxtx] == 'GET START BIT':
self.state[rxtx] = 'GET DATA BITS'
return
if self.state[rxtx] == 'GET DATA BITS':
self.state[rxtx] = 'GET PARITY BIT'
if self.options['parity'] != 'none':
return
# FALLTHROUGH
if self.state[rxtx] == 'GET PARITY BIT':
self.state[rxtx] = 'GET STOP BITS'
if self.options['stop_bits']:
return
# FALLTHROUGH
if self.state[rxtx] == 'GET STOP BITS':
# Postprocess the previously received UART frame. Advance
# the read position to after the frame's last bit time. So
# that the start of the next START bit won't fall into the
# end of the previously received UART frame. This improves
# robustness in the presence of glitchy input data.
ss = self.frame_start[rxtx]
es = self.samplenum + ceil(self.bit_width / 2.0)
self.handle_frame(rxtx, ss, es)
self.state[rxtx] = 'WAIT FOR START BIT'
self.idle_start[rxtx] = frame_end
return
# Unhandled state, actually a programming error. Emit diagnostics?
self.state[rxtx] = 'WAIT FOR START BIT'
def handle_frame(self, rxtx, ss, es):
# Pass the complete UART frame to upper layers.
self.putpse(ss, es, ['FRAME', rxtx,
(self.datavalue[rxtx], self.frame_valid[rxtx])])
def handle_idle(self, rxtx, ss, es):
self.putpse(ss, es, ['IDLE', rxtx, 0])
def handle_break(self, rxtx, ss, es):
self.putpse(ss, es, ['BREAK', rxtx, 0])
self.putgse(ss, es, [Ann.RX_BREAK + rxtx,
['Break condition', 'Break', 'Brk', 'B']])
self.state[rxtx] = 'WAIT FOR START BIT'
def get_wait_cond(self, rxtx, inv):
# Return condititions that are suitable for Decoder.wait(). Those
# conditions either match the falling edge of the START bit, or
# the sample point of the next bit time.
state = self.state[rxtx]
if state == 'WAIT FOR START BIT':
return {rxtx: 'r' if inv else 'f'}
if state in ('GET START BIT', 'GET DATA BITS',
'GET PARITY BIT', 'GET STOP BITS'):
bitnum = self.cur_frame_bit[rxtx]
# TODO: Currently does not support half STOP bits.
want_num = ceil(self.get_sample_point(rxtx, bitnum))
return {'skip': want_num - self.samplenum}
def get_idle_cond(self, rxtx, inv):
# Return a condition that corresponds to the (expected) end of
# the next frame, assuming that it will be an "idle frame"
# (constant high input level for the frame's length).
if self.idle_start[rxtx] is None:
return None
end_of_frame = self.idle_start[rxtx] + self.frame_len_sample_count
if end_of_frame < self.samplenum:
return None
return {'skip': end_of_frame - self.samplenum}
def inspect_sample(self, rxtx, signal, inv):
# Inspect a sample returned by .wait() for the specified UART line.
if inv:
signal = not signal
state = self.state[rxtx]
if state == 'WAIT FOR START BIT':
self.wait_for_start_bit(rxtx, signal)
elif state == 'GET START BIT':
self.get_start_bit(rxtx, signal)
elif state == 'GET DATA BITS':
self.get_data_bits(rxtx, signal)
elif state == 'GET PARITY BIT':
self.get_parity_bit(rxtx, signal)
elif state == 'GET STOP BITS':
self.get_stop_bits(rxtx, signal)
def inspect_edge(self, rxtx, signal, inv):
# Inspect edges, independently from traffic, to detect break conditions.
if inv:
signal = not signal
if not signal:
# Signal went low. Start another interval.
self.break_start[rxtx] = self.samplenum
return
# Signal went high. Was there an extended period with low signal?
if self.break_start[rxtx] is None:
return
diff = self.samplenum - self.break_start[rxtx]
if diff >= self.break_min_sample_count:
ss, es = self.frame_start[rxtx], self.samplenum
self.handle_break(rxtx, ss, es)
self.break_start[rxtx] = None
def inspect_idle(self, rxtx, signal, inv):
# Check each edge and each period of stable input (either level).
# Can derive the "idle frame period has passed" condition.
if inv:
signal = not signal
if not signal:
# Low input, cease inspection.
self.idle_start[rxtx] = None
return
# High input, either just reached, or still stable.
if self.idle_start[rxtx] is None:
self.idle_start[rxtx] = self.samplenum
diff = self.samplenum - self.idle_start[rxtx]
if diff < self.frame_len_sample_count:
return
ss, es = self.idle_start[rxtx], self.samplenum
self.handle_idle(rxtx, ss, es)
self.idle_start[rxtx] = es
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
has_pin = [self.has_channel(ch) for ch in (RX, TX)]
if not True in has_pin:
raise ChannelError('Need at least one of TX or RX pins.')
opt = self.options
inv = [opt['invert_rx'] == 'yes', opt['invert_tx'] == 'yes']
cond_data_idx = [None] * len(has_pin)
# Determine the number of samples for a complete frame's time span.
# A period of low signal (at least) that long is a break condition.
frame_samples = 1 # START
frame_samples += self.options['data_bits']
frame_samples += 0 if self.options['parity'] == 'none' else 1
frame_samples += self.options['stop_bits']
frame_samples *= self.bit_width
self.frame_len_sample_count = ceil(frame_samples)
self.break_min_sample_count = self.frame_len_sample_count
cond_edge_idx = [None] * len(has_pin)
cond_idle_idx = [None] * len(has_pin)
while True:
conds = []
if has_pin[RX]:
cond_data_idx[RX] = len(conds)
conds.append(self.get_wait_cond(RX, inv[RX]))
cond_edge_idx[RX] = len(conds)
conds.append({RX: 'e'})
cond_idle_idx[RX] = None
idle_cond = self.get_idle_cond(RX, inv[RX])
if idle_cond:
cond_idle_idx[RX] = len(conds)
conds.append(idle_cond)
if has_pin[TX]:
cond_data_idx[TX] = len(conds)
conds.append(self.get_wait_cond(TX, inv[TX]))
cond_edge_idx[TX] = len(conds)
conds.append({TX: 'e'})
cond_idle_idx[TX] = None
idle_cond = self.get_idle_cond(TX, inv[TX])
if idle_cond:
cond_idle_idx[TX] = len(conds)
conds.append(idle_cond)
(rx, tx) = self.wait(conds)
if cond_data_idx[RX] is not None and self.matched[cond_data_idx[RX]]:
self.inspect_sample(RX, rx, inv[RX])
if cond_edge_idx[RX] is not None and self.matched[cond_edge_idx[RX]]:
self.inspect_edge(RX, rx, inv[RX])
self.inspect_idle(RX, rx, inv[RX])
if cond_idle_idx[RX] is not None and self.matched[cond_idle_idx[RX]]:
self.inspect_idle(RX, rx, inv[RX])
if cond_data_idx[TX] is not None and self.matched[cond_data_idx[TX]]:
self.inspect_sample(TX, tx, inv[TX])
if cond_edge_idx[TX] is not None and self.matched[cond_edge_idx[TX]]:
self.inspect_edge(TX, tx, inv[TX])
self.inspect_idle(TX, tx, inv[TX])
if cond_idle_idx[TX] is not None and self.matched[cond_idle_idx[TX]]:
self.inspect_idle(TX, tx, inv[TX])
|