1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2011 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
#
# UART protocol decoder
#
#
# Universal Asynchronous Receiver Transmitter (UART) is a simple serial
# communication protocol which allows two devices to talk to each other.
#
# It uses just two data signals and a ground (GND) signal:
# - RX/RXD: Receive signal
# - TX/TXD: Transmit signal
#
# The protocol is asynchronous, i.e., there is no dedicated clock signal.
# Rather, both devices have to agree on a baudrate (number of bits to be
# transmitted per second) beforehand. Baudrates can be arbitrary in theory,
# but usually the choice is limited by the hardware UARTs that are used.
# Common values are 9600 or 115200.
#
# The protocol allows full-duplex transmission, i.e. both devices can send
# data at the same time. However, unlike SPI (which is always full-duplex,
# i.e., each send operation is automatically also a receive operation), UART
# allows one-way communication, too. In such a case only one signal (and GND)
# is required.
#
# The data is sent over the TX line in so-called 'frames', which consist of:
# - Exactly one start bit (always 0/low).
# - Between 5 and 9 data bits.
# - An (optional) parity bit.
# - One or more stop bit(s).
#
# The idle state of the RX/TX line is 1/high. As the start bit is 0/low, the
# receiver can continually monitor its RX line for a falling edge, in order
# to detect the start bit.
#
# Once detected, it can (due to the agreed-upon baudrate and thus the known
# width/duration of one UART bit) sample the state of the RX line "in the
# middle" of each (start/data/parity/stop) bit it wants to analyze.
#
# It is configurable whether there is a parity bit in a frame, and if yes,
# which type of parity is used:
# - None: No parity bit is included.
# - Odd: The number of 1 bits in the data (and parity bit itself) is odd.
# - Even: The number of 1 bits in the data (and parity bit itself) is even.
# - Mark/one: The parity bit is always 1/high (also called 'mark state').
# - Space/zero: The parity bit is always 0/low (also called 'space state').
#
# It is also configurable how many stop bits are to be used:
# - 1 stop bit (most common case)
# - 2 stop bits
# - 1.5 stop bits (i.e., one stop bit, but 1.5 times the UART bit width)
# - 0.5 stop bits (i.e., one stop bit, but 0.5 times the UART bit width)
#
# The bit order of the 5-9 data bits is LSB-first.
#
# Possible special cases:
# - One or both data lines could be inverted, which also means that the idle
# state of the signal line(s) is low instead of high.
# - Only the data bits on one or both data lines (and the parity bit) could
# be inverted (but the start/stop bits remain non-inverted).
# - The bit order could be MSB-first instead of LSB-first.
# - The baudrate could change in the middle of the communication. This only
# happens in very special cases, and can only work if both devices know
# to which baudrate they are to switch, and when.
# - Theoretically, the baudrate on RX and the one on TX could also be
# different, but that's a very obscure case and probably doesn't happen
# very often in practice.
#
# Error conditions:
# - If there is a parity bit, but it doesn't match the expected parity,
# this is called a 'parity error'.
# - If there are no stop bit(s), that's called a 'frame error'.
#
# More information:
# TODO: URLs
#
#
# Protocol output format:
# put(<startsample>, <endsample>, self.out_proto, <packet>)
#
# The <packet> is a list with two entries:
# [<packet-type>, <packet-data>]
#
# Valid packet-type values: T_START, T_DATA, T_PARITY, T_STOP, T_INVALID_START,
# T_INVALID_STOP, T_PARITY_ERROR
#
# The packet-data field has the following format and meaning:
# - T_START: The data is the (integer) value of the start bit (0 or 1).
# - T_DATA: The data is the (integer) value of the UART data. Valid values
# range from 0 to 512 (as the data can be up to 9 bits in size).
# - T_PARITY: The data is the (integer) value of the parity bit (0 or 1).
# - T_STOP: The data is the (integer) value of the stop bit (0 or 1).
# - T_INVALID_START: The data is the (integer) value of the start bit (0 or 1).
# - T_INVALID_STOP: The data is the (integer) value of the stop bit (0 or 1).
# - T_PARITY_ERROR: The data is a tuple with two entries. The first one is
# the expected parity value, the second is the actual parity value.
#
# Examples:
# [T_START, 0]
# [T_DATA, 65]
# [T_PARITY, 0]
# [T_STOP, 1]
# [T_INVALID_START, 1]
# [T_INVALID_STOP, 0]
# [T_PARITY_ERROR, (0, 1)]
#
import sigrokdecode
# States
WAIT_FOR_START_BIT = 0
GET_START_BIT = 1
GET_DATA_BITS = 2
GET_PARITY_BIT = 3
GET_STOP_BITS = 4
# Parity options
PARITY_NONE = 0
PARITY_ODD = 1
PARITY_EVEN = 2
PARITY_ZERO = 3
PARITY_ONE = 4
# Stop bit options
STOP_BITS_0_5 = 0
STOP_BITS_1 = 1
STOP_BITS_1_5 = 2
STOP_BITS_2 = 3
# Bit order options
LSB_FIRST = 0
MSB_FIRST = 1
# Annotation feed formats
ANN_ASCII = 0
ANN_DEC = 1
ANN_HEX = 2
ANN_OCT = 3
ANN_BITS = 4
# Protocol output packet types
T_START = 0
T_DATA = 1
T_PARITY = 2
T_STOP = 3
T_INVALID_START = 4
T_INVALID_STOP = 5
T_PARITY_ERROR = 6
# Given a parity type to check (odd, even, zero, one), the value of the
# parity bit, the value of the data, and the length of the data (5-9 bits,
# usually 8 bits) return True if the parity is correct, False otherwise.
# PARITY_NONE is _not_ allowed as value for 'parity_type'.
def parity_ok(parity_type, parity_bit, data, num_data_bits):
# Handle easy cases first (parity bit is always 1 or 0).
if parity_type == PARITY_ZERO:
return parity_bit == 0
elif parity_type == PARITY_ONE:
return parity_bit == 1
# Count number of 1 (high) bits in the data (and the parity bit itself!).
parity = bin(data).count('1') + parity_bit
# Check for odd/even parity.
if parity_type == PARITY_ODD:
return (parity % 2) == 1
elif parity_type == PARITY_EVEN:
return (parity % 2) == 0
else:
raise Exception('Invalid parity type: %d' % parity_type)
class Decoder(sigrokdecode.Decoder):
id = 'uart'
name = 'UART'
longname = 'Universal Asynchronous Receiver/Transmitter (UART)'
desc = 'Universal Asynchronous Receiver/Transmitter (UART)'
longdesc = 'TODO.'
author = 'Uwe Hermann'
email = 'uwe@hermann-uwe.de'
license = 'gplv2+'
inputs = ['logic']
outputs = ['uart']
probes = [
# Allow specifying only one of the signals, e.g. if only one data
# direction exists (or is relevant).
{'id': 'rx', 'name': 'RX', 'desc': 'UART receive line'},
{'id': 'tx', 'name': 'TX', 'desc': 'UART transmit line'},
]
options = {
'baudrate': ['UART baud rate', 115200],
'num_data_bits': ['Data bits', 8], # Valid: 5-9.
'parity': ['Parity', PARITY_NONE],
'parity_check': ['Check parity', True],
'num_stop_bits': ['Stop bit(s)', STOP_BITS_1],
'bit_order': ['Bit order', LSB_FIRST],
# TODO: Options to invert the signal(s).
# ...
}
annotation = [
# ANN_ASCII
["ASCII", "TODO: description"],
# ANN_DEC
["Decimal", "TODO: description"],
# ANN_HEX
["Hex", "TODO: description"],
# ANN_OCT
["Octal", "TODO: description"],
# ANN_BITS
["Bits", "TODO: description"],
]
def __init__(self, **kwargs):
self.out_proto = None
self.out_ann = None
# Set defaults, can be overridden in 'start'.
self.baudrate = 115200
self.num_data_bits = 8
self.parity = PARITY_NONE
self.check_parity = True
self.num_stop_bits = 1
self.bit_order = LSB_FIRST
self.samplenum = 0
self.frame_start = -1
self.startbit = -1
self.cur_data_bit = 0
self.databyte = 0
self.stopbit1 = -1
self.startsample = -1
# Initial state.
self.staterx = WAIT_FOR_START_BIT
self.oldrx = None
self.oldtx = None
def start(self, metadata):
self.samplerate = metadata['samplerate']
self.out_proto = self.output_new(sigrokdecode.SRD_OUTPUT_PROTOCOL, 'uart')
self.out_ann = self.output_new(sigrokdecode.SRD_OUTPUT_ANNOTATION, 'uart')
# TODO
### self.baudrate = metadata['baudrate']
### self.num_data_bits = metadata['num_data_bits']
### self.parity = metadata['parity']
### self.parity_check = metadata['parity_check']
### self.num_stop_bits = metadata['num_stop_bits']
### self.bit_order = metadata['bit_order']
# The width of one UART bit in number of samples.
self.bit_width = float(self.samplerate) / float(self.baudrate)
def report(self):
pass
# Return true if we reached the middle of the desired bit, false otherwise.
def reached_bit(self, bitnum):
# bitpos is the samplenumber which is in the middle of the
# specified UART bit (0 = start bit, 1..x = data, x+1 = parity bit
# (if used) or the first stop bit, and so on).
bitpos = self.frame_start + (self.bit_width / 2.0)
bitpos += bitnum * self.bit_width
if self.samplenum >= bitpos:
return True
return False
def reached_bit_last(self, bitnum):
bitpos = self.frame_start + ((bitnum + 1) * self.bit_width)
if self.samplenum >= bitpos:
return True
return False
def wait_for_start_bit(self, old_signal, signal):
# The start bit is always 0 (low). As the idle UART (and the stop bit)
# level is 1 (high), the beginning of a start bit is a falling edge.
if not (old_signal == 1 and signal == 0):
return
# Save the sample number where the start bit begins.
self.frame_start = self.samplenum
self.staterx = GET_START_BIT
def get_start_bit(self, signal):
# Skip samples until we're in the middle of the start bit.
if not self.reached_bit(0):
return
self.startbit = signal
# The startbit must be 0. If not, we report an error.
if self.startbit != 0:
self.put(self.frame_start, self.samplenum, self.out_proto,
[T_INVALID_START, self.startbit])
# TODO: Abort? Ignore rest of the frame?
self.cur_data_bit = 0
self.databyte = 0
self.startsample = -1
self.staterx = GET_DATA_BITS
self.put(self.frame_start, self.samplenum, self.out_proto,
[T_START, self.startbit])
self.put(self.frame_start, self.samplenum, self.out_ann,
[ANN_ASCII, ['Start bit', 'Start', 'S']])
def get_data_bits(self, signal):
# Skip samples until we're in the middle of the desired data bit.
if not self.reached_bit(self.cur_data_bit + 1):
return
# Save the sample number where the data byte starts.
if self.startsample == -1:
self.startsample = self.samplenum
# Get the next data bit in LSB-first or MSB-first fashion.
if self.bit_order == LSB_FIRST:
self.databyte >>= 1
self.databyte |= (signal << (self.num_data_bits - 1))
elif self.bit_order == MSB_FIRST:
self.databyte <<= 1
self.databyte |= (signal << 0)
else:
raise Exception('Invalid bit order value: %d', self.bit_order)
# Return here, unless we already received all data bits.
if self.cur_data_bit < self.num_data_bits - 1: # TODO? Off-by-one?
self.cur_data_bit += 1
return
self.staterx = GET_PARITY_BIT
self.put(self.startsample, self.samplenum - 1, self.out_proto,
[T_DATA, self.databyte])
self.put(self.startsample, self.samplenum - 1, self.out_ann,
[ANN_ASCII, [chr(self.databyte)]])
self.put(self.startsample, self.samplenum - 1, self.out_ann,
[ANN_DEC, [str(self.databyte)]])
self.put(self.startsample, self.samplenum - 1, self.out_ann,
[ANN_HEX, [hex(self.databyte), hex(self.databyte)[2:]]])
self.put(self.startsample, self.samplenum - 1, self.out_ann,
[ANN_OCT, [oct(self.databyte), oct(self.databyte)[2:]]])
self.put(self.startsample, self.samplenum - 1, self.out_ann,
[ANN_BITS, [bin(self.databyte), bin(self.databyte)[2:]]])
def get_parity_bit(self, signal):
# If no parity is used/configured, skip to the next state immediately.
if self.parity == PARITY_NONE:
self.staterx = GET_STOP_BITS
return
# Skip samples until we're in the middle of the parity bit.
if not self.reached_bit(self.num_data_bits + 1):
return
self.paritybit = signal
self.staterx = GET_STOP_BITS
if parity_ok(self.parity, self.paritybit, self.databyte,
self.num_data_bits):
# TODO: Fix range.
self.put(self.samplenum, self.samplenum, self.out_proto,
[T_PARITY_BIT, self.paritybit])
self.put(self.samplenum, self.samplenum, self.out_ann,
[ANN_ASCII, ['Parity bit', 'Parity', 'P']])
else:
# TODO: Fix range.
# TODO: Return expected/actual parity values.
self.put(self.samplenum, self.samplenum, self.out_proto,
[T_PARITY_ERROR, (0, 1)]) # FIXME: Dummy tuple...
self.put(self.samplenum, self.samplenum, self.out_ann,
[ANN_ASCII, ['Parity error', 'Parity err', 'PE']])
# TODO: Currently only supports 1 stop bit.
def get_stop_bits(self, signal):
# Skip samples until we're in the middle of the stop bit(s).
skip_parity = 0 if self.parity == PARITY_NONE else 1
if not self.reached_bit(self.num_data_bits + 1 + skip_parity):
return
self.stopbit1 = signal
# Stop bits must be 1. If not, we report an error.
if self.stopbit1 != 1:
self.put(self.frame_start, self.samplenum, self.out_proto,
[T_INVALID_STOP, self.stopbit1])
# TODO: Abort? Ignore the frame? Other?
self.staterx = WAIT_FOR_START_BIT
# TODO: Fix range.
self.put(self.samplenum, self.samplenum, self.out_proto,
[T_STOP, self.stopbit1])
self.put(self.samplenum, self.samplenum, self.out_ann,
[ANN_ASCII, ['Stop bit', 'Stop', 'P']])
def decode(self, timeoffset, duration, data): # TODO
# for (samplenum, (rx, tx)) in data:
for (samplenum, (rx,)) in data:
# TODO: Start counting at 0 or 1? Increase before or after?
self.samplenum += 1
# First sample: Save RX/TX value.
if self.oldrx == None:
# Get RX/TX bit values (0/1 for low/high) of the first sample.
self.oldrx = rx
# self.oldtx = tx
continue
# State machine.
if self.staterx == WAIT_FOR_START_BIT:
self.wait_for_start_bit(self.oldrx, rx)
elif self.staterx == GET_START_BIT:
self.get_start_bit(rx)
elif self.staterx == GET_DATA_BITS:
self.get_data_bits(rx)
elif self.staterx == GET_PARITY_BIT:
self.get_parity_bit(rx)
elif self.staterx == GET_STOP_BITS:
self.get_stop_bits(rx)
else:
raise Exception('Invalid state: %s' % self.staterx)
# Save current RX/TX values for the next round.
self.oldrx = rx
# self.oldtx = tx
# if proto != []:
# self.put(0, 0, self.out_proto, proto)
# if ann != []:
# self.put(0, 0, self.out_ann, ann)
|