1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2010 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# Transition counter protocol decoder
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 1
id = 'transitioncounter'
name = 'Transition counter'
longname = 'Pin transition counter'
desc = 'Counts rising/falling edges in the signal.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['transitioncounts']
probes = []
optional_probes = []
options = {}
annotations = [
['TODO', 'TODO'],
]
def __init__(self, **kwargs):
self.channels = -1
self.lastsample = None
def start(self):
# self.out_proto = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
def report(self):
pass
def decode(self, ss, es, data):
for (samplenum, s) in data:
# ...
if self.channels == -1:
self.channels = len(s)
self.oldbit = [0] * self.channels
self.transitions = [0] * self.channels
self.rising = [0] * self.channels
self.falling = [0] * self.channels
# Optimization: Skip identical samples (no transitions).
if self.lastsample == s:
continue
# Upon the first sample, store the initial values.
if self.lastsample == None:
self.lastsample = s
for i in range(self.channels):
self.oldbit[i] = self.lastsample[i]
# Iterate over all channels/probes in this sample.
# Count rising and falling edges for each channel.
for i in range(self.channels):
curbit = s[i]
# Optimization: Skip identical bits (no transitions).
if self.oldbit[i] == curbit:
continue
elif (self.oldbit[i] == 0 and curbit == 1):
self.rising[i] += 1
elif (self.oldbit[i] == 1 and curbit == 0):
self.falling[i] += 1
self.oldbit[i] = curbit
# Save the current sample as 'lastsample' for the next round.
self.lastsample = s
# Total number of transitions = rising + falling edges.
for i in range(self.channels):
self.transitions[i] = self.rising[i] + self.falling[i]
# TODO: Which output format?
# TODO: How to only output something after the last chunk of data?
outdata = []
for i in range(self.channels):
outdata.append([self.transitions[i], self.rising[i],
self.falling[i]])
if outdata != []:
# self.put(0, 0, self.out_proto, out_proto)
self.put(0, 0, self.out_ann, [0, [str(outdata)]])
|