1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2015 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
dacs = {
0: 'DACA',
1: 'DACB',
2: 'DACC',
3: 'DACD',
}
class Decoder(srd.Decoder):
api_version = 2
id = 'tlc5620'
name = 'TI TLC5620'
longname = 'Texas Instruments TLC5620'
desc = 'Texas Instruments TLC5620 8-bit quad DAC.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['tlc5620']
channels = (
{'id': 'clk', 'name': 'CLK', 'desc': 'Serial interface clock'},
{'id': 'data', 'name': 'DATA', 'desc': 'Serial interface data'},
)
optional_channels = (
{'id': 'load', 'name': 'LOAD', 'desc': 'Serial interface load control'},
{'id': 'ldac', 'name': 'LDAC', 'desc': 'Load DAC'},
)
options = (
{'id': 'vref_a', 'desc': 'Reference voltage DACA (V)', 'default': 3.3},
{'id': 'vref_b', 'desc': 'Reference voltage DACB (V)', 'default': 3.3},
{'id': 'vref_c', 'desc': 'Reference voltage DACC (V)', 'default': 3.3},
{'id': 'vref_d', 'desc': 'Reference voltage DACD (V)', 'default': 3.3},
)
annotations = (
('dac-select', 'DAC select'),
('gain', 'Gain'),
('value', 'DAC value'),
('data-latch', 'Data latch point'),
('ldac-fall', 'LDAC falling edge'),
('bit', 'Bit'),
('reg-write', 'Register write'),
('voltage-update', 'Voltage update'),
('voltage-update-all', 'Voltage update (all DACs)'),
('invalid-cmd', 'Invalid command'),
)
annotation_rows = (
('bits', 'Bits', (5,)),
('fields', 'Fields', (0, 1, 2)),
('registers', 'Registers', (6, 7)),
('voltage-updates', 'Voltage updates', (8,)),
('events', 'Events', (3, 4)),
('errors', 'Errors', (9,)),
)
def __init__(self):
self.oldpins = self.oldclk = self.oldload = self.oldldac = None
self.bits = []
self.ss_dac_first = None
self.ss_dac = self.es_dac = 0
self.ss_gain = self.es_gain = 0
self.ss_value = self.es_value = 0
self.dac_select = self.gain = self.dac_value = None
self.dacval = {'A': '?', 'B': '?', 'C': '?', 'D': '?'}
self.gains = {'A': '?', 'B': '?', 'C': '?', 'D': '?'}
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def handle_11bits(self):
# Only look at the last 11 bits, the rest is ignored by the TLC5620.
if len(self.bits) > 11:
self.bits = self.bits[-11:]
# If there are less than 11 bits, something is probably wrong.
if len(self.bits) < 11:
ss, es = self.samplenum, self.samplenum
if len(self.bits) >= 2:
ss = self.bits[0][1]
es = self.bits[-1][1] + (self.bits[1][1] - self.bits[0][1])
self.put(ss, es, self.out_ann, [9, ['Command too short']])
self.bits = []
return False
self.ss_dac = self.bits[0][1]
self.es_dac = self.ss_gain = self.bits[2][1]
self.es_gain = self.ss_value = self.bits[3][1]
self.clock_width = self.es_gain - self.ss_gain
self.es_value = self.bits[10][1] + self.clock_width # Guessed.
if self.ss_dac_first is None:
self.ss_dac_first = self.ss_dac
s = ''.join(str(i[0]) for i in self.bits[:2])
self.dac_select = s = dacs[int(s, 2)]
self.put(self.ss_dac, self.es_dac, self.out_ann,
[0, ['DAC select: %s' % s, 'DAC sel: %s' % s,
'DAC: %s' % s, 'D: %s' % s, s, s[3]]])
self.gain = g = 1 + self.bits[2][0]
self.put(self.ss_gain, self.es_gain, self.out_ann,
[1, ['Gain: x%d' % g, 'G: x%d' % g, 'x%d' % g]])
s = ''.join(str(i[0]) for i in self.bits[3:])
self.dac_value = v = int(s, 2)
self.put(self.ss_value, self.es_value, self.out_ann,
[2, ['DAC value: %d' % v, 'Value: %d' % v, 'Val: %d' % v,
'V: %d' % v, '%d' % v]])
# Emit an annotation for each bit.
for i in range(1, 11):
self.put(self.bits[i - 1][1], self.bits[i][1], self.out_ann,
[5, [str(self.bits[i - 1][0])]])
self.put(self.bits[10][1], self.bits[10][1] + self.clock_width,
self.out_ann, [5, [str(self.bits[10][0])]])
self.bits = []
return True
def handle_falling_edge_load(self):
if not self.handle_11bits():
return
s, v, g = self.dac_select, self.dac_value, self.gain
self.put(self.samplenum, self.samplenum, self.out_ann,
[3, ['Falling edge on LOAD', 'LOAD fall', 'F']])
vref = self.options['vref_%s' % self.dac_select[3].lower()]
v = '%.2fV' % (vref * (v / 256) * self.gain)
if self.ldac == 0:
# If LDAC is low, the voltage is set immediately.
self.put(self.ss_dac, self.es_value, self.out_ann,
[7, ['Setting %s voltage to %s' % (s, v),
'%s=%s' % (s, v)]])
else:
# If LDAC is high, the voltage is not set immediately, but rather
# stored in a register. When LDAC goes low all four DAC voltages
# (DAC A/B/C/D) will be set at the same time.
self.put(self.ss_dac, self.es_value, self.out_ann,
[6, ['Setting %s register value to %s' % \
(s, v), '%s=%s' % (s, v)]])
# Save the last value the respective DAC was set to.
self.dacval[self.dac_select[-1]] = str(self.dac_value)
self.gains[self.dac_select[-1]] = self.gain
def handle_falling_edge_ldac(self):
self.put(self.samplenum, self.samplenum, self.out_ann,
[4, ['Falling edge on LDAC', 'LDAC fall', 'LDAC', 'L']])
# Don't emit any annotations if we didn't see any register writes.
if self.ss_dac_first is None:
return
# Calculate voltages based on Vref and the per-DAC gain.
dacval = {}
for key, val in self.dacval.items():
if val == '?':
dacval[key] = '?'
else:
vref = self.options['vref_%s' % key.lower()]
v = vref * (int(val) / 256) * self.gains[key]
dacval[key] = '%.2fV' % v
s = ''.join(['DAC%s=%s ' % (d, dacval[d]) for d in 'ABCD']).strip()
self.put(self.ss_dac_first, self.samplenum, self.out_ann,
[8, ['Updating voltages: %s' % s, s, s.replace('DAC', '')]])
self.ss_dac_first = None
def handle_new_dac_bit(self):
self.bits.append([self.datapin, self.samplenum])
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
# Ignore identical samples early on (for performance reasons).
if self.oldpins == pins:
continue
self.oldpins, (clk, self.datapin, load, ldac) = pins, pins
self.ldac = ldac
# DATA is shifted in the DAC on the falling CLK edge (MSB-first).
# A falling edge of LOAD will latch the data.
if self.oldload == 1 and load == 0:
self.handle_falling_edge_load()
if self.oldldac == 1 and ldac == 0:
self.handle_falling_edge_ldac()
if self.oldclk == 1 and clk == 0:
self.handle_new_dac_bit()
self.oldclk = clk
self.oldload = load
self.oldldac = ldac
|