1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2019-2020 Benjamin Vernoux <bvernoux@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from collections import namedtuple
from common.srdhelper import SrdIntEnum
from .lists import *
Ann = SrdIntEnum.from_str('Ann', 'BURST_READ BURST_WRITE \
BURST_READB BURST_WRITEB BURST_READT BURST_WRITET \
DIRECTCMD FIFO_WRITE FIFO_READ STATUS WARN')
Pos = namedtuple('Pos', ['ss', 'es'])
Data = namedtuple('Data', ['mosi', 'miso'])
class Decoder(srd.Decoder):
api_version = 3
id = 'st25r39xx_spi'
name = 'ST25R39xx (SPI mode)'
longname = 'STMicroelectronics ST25R39xx'
desc = 'High performance NFC universal device and EMVCo reader protocol.'
license = 'gplv2+'
inputs = ['spi']
outputs = []
tags = ['IC', 'Wireless/RF']
annotations = (
('Read', 'Burst register read'),
('Write', 'Burst register write'),
('ReadB', 'Burst register SpaceB read'),
('WriteB', 'Burst register SpaceB write'),
('ReadT', 'Burst register Test read'),
('WriteT', 'Burst register Test write'),
('Cmd', 'Direct command'),
('FIFOW', 'FIFO write'),
('FIFOR', 'FIFO read'),
('status_reg', 'Status register'),
('warning', 'Warning'),
)
annotation_rows = (
('regs', 'Regs', (Ann.prefixes('BURST_'))),
('cmds', 'Commands', (Ann.DIRECTCMD,)),
('data', 'Data', (Ann.prefixes('FIFO_'))),
('status', 'Status register', (Ann.STATUS,)),
('warnings', 'Warnings', (Ann.WARN,)),
)
def __init__(self):
self.reset()
def reset(self):
self.next()
self.requirements_met = True
self.cs_was_released = False
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def warn(self, pos, msg):
'''Put a warning message 'msg' at 'pos'.'''
self.put(pos.ss, pos.es, self.out_ann, [Ann.WARN, [msg]])
def putp(self, pos, ann, msg):
'''Put an annotation message 'msg' at 'pos'.'''
self.put(pos.ss, pos.es, self.out_ann, [ann, [msg]])
def putp2(self, pos, ann, msg1, msg2):
'''Put an annotation message 'msg' at 'pos'.'''
self.put(pos.ss, pos.es, self.out_ann, [ann, [msg1, msg2]])
def next(self):
'''Resets the decoder after a complete command was decoded.'''
# 'True' for the first byte after CS# went low.
self.first = True
# The current command, and the minimum and maximum number
# of data bytes to follow.
self.cmd = None
self.min = 0
self.max = 0
# Used to collect the bytes after the command byte
# (and the start/end sample number).
self.mb = []
self.ss_mb = -1
self.es_mb = -1
def mosi_bytes(self):
'''Returns the collected MOSI bytes of a multi byte command.'''
return [b.mosi for b in self.mb]
def miso_bytes(self):
'''Returns the collected MISO bytes of a multi byte command.'''
return [b.miso for b in self.mb]
def decode_command(self, pos, b):
'''Decodes the command byte 'b' at position 'pos' and prepares
the decoding of the following data bytes.'''
c = self.parse_command(b)
if c is None:
self.warn(pos, 'Unknown command')
return
self.cmd, self.dat, self.min, self.max = c
if self.cmd == 'Cmd':
self.putp(pos, Ann.DIRECTCMD, self.format_command())
else:
# Don't output anything now, the command is merged with
# the data bytes following it.
self.ss_mb = pos.ss
def format_command(self):
'''Returns the label for the current command.'''
if self.cmd in ('Write', 'Read', 'WriteB', 'ReadB', 'WriteT', 'ReadT', 'FIFO Write', 'FIFO Read'):
return self.cmd
if self.cmd == 'Cmd':
reg = dir_cmd.get(self.dat, 'Unknown direct command')
return '{} {}'.format(self.cmd, reg)
else:
return 'TODO Cmd {}'.format(self.cmd)
def parse_command(self, b):
'''Parses the command byte.
Returns a tuple consisting of:
- the name of the command
- additional data needed to dissect the following bytes
- minimum number of following bytes
- maximum number of following bytes (None for infinite)
'''
addr = b & 0x3F
# previous command was 'Space B'
if self.cmd == 'Space B':
if (b & 0xC0) == 0x00:
return ('WriteB', addr, 1, 99999)
if (b & 0xC0) == 0x40:
return ('ReadB', addr, 1, 99999)
else:
self.warn(pos, 'Unknown address/command combination')
# previous command was 'TestAccess'
elif self.cmd == 'TestAccess':
if (b & 0xC0) == 0x00:
return ('WriteT', addr, 1, 99999)
if (b & 0xC0) == 0x40:
return ('ReadT', addr, 1, 99999)
else:
self.warn(pos, 'Unknown address/command combination')
else:
# Space A regs or other operation modes (except Space B)
# Register Write 0b00xxxxxx 0x00 to 0x3F => 'Write'
# Register Read 0b01xxxxxx 0x40 to 0x7F => 'Read'
if (b <= 0x7F):
if (b & 0xC0) == 0x00:
return ('Write', addr, 1, 99999)
if (b & 0xC0) == 0x40:
return ('Read', addr, 1, 99999)
else:
self.warn(pos, 'Unknown address/command combination')
else:
# FIFO Load 0b10000000 0x80 => 'FIFO Write'
# PT_memory loadA-config 0b10100000 0xA0 => 'Write'
# PT_memory loadF-config 0b10101000 0xA8 => 'Write'
# PT_memory loadTSN data 0b10101100 0xAC => 'Write'
# PT_memory Read 0b10111111 0xBF => 'Read'
# FIFO Read 0b10011111 0x9F => 'FIFO Read'
# Direct Command 0b11xxx1xx 0xC0 to 0xE8 => 'Cmd'
# Register Space-B Access 0b11111011 0xFB => 'Space B'
# Register Test Access 0b11111100 0xFC => 'TestAccess'
if b == 0x80:
return ('FIFO Write', b, 1, 99999)
if b == 0xA0:
return ('Write', b, 1, 99999)
if b == 0xA8:
return ('Write', b, 1, 99999)
if b == 0xAC:
return ('Write', b, 1, 99999)
if b == 0xBF:
return ('Read', b, 1, 99999)
if b == 0x9F:
return ('FIFO Read', b, 1, 99999)
if (b >= 0x0C and b <= 0xE8) :
return ('Cmd', b, 0, 0)
if b == 0xFB:
return ('Space B', b, 0, 0)
if b == 0xFC:
return ('TestAccess', b, 0, 0)
else:
self.warn(pos, 'Unknown address/command combination')
def decode_reg(self, pos, ann, regid, data):
'''Decodes a register.
pos -- start and end sample numbers of the register
ann -- the annotation number that is used to output the register.
regid -- may be either an integer used as a key for the 'regs'
dictionary, or a string directly containing a register name.'
data -- the register content.
'''
if type(regid) == int:
if (ann == Ann.FIFO_READ) or (ann == Ann.FIFO_WRITE):
name = ''
elif (ann == Ann.BURST_READB) or (ann == Ann.BURST_WRITEB):
# Get the name of the register.
if regid not in regsSpaceB:
self.warn(pos, 'Unknown register SpaceB')
return
name = '{} ({:02X})'.format(regsSpaceB[regid], regid)
elif (ann == Ann.BURST_READT) or (ann == Ann.BURST_WRITET):
# Get the name of the register.
if regid not in regsTest:
self.warn(pos, 'Unknown register Test')
return
name = '{} ({:02X})'.format(regsTest[regid], regid)
else:
# Get the name of the register.
if regid not in regsSpaceA:
self.warn(pos, 'Unknown register SpaceA')
return
name = '{} ({:02X})'.format(regsSpaceA[regid], regid)
else:
name = regid
if regid == 'STATUS' and ann == Ann.STATUS:
label = 'Status'
self.decode_status_reg(pos, ann, data, label)
else:
label = '{}: {}'.format(self.format_command(), name)
self.decode_mb_data(pos, ann, data, label)
def decode_status_reg(self, pos, ann, data, label):
'''Decodes the data bytes 'data' of a status register at position
'pos'. The decoded data is prefixed with 'label'.'''
def decode_mb_data(self, pos, ann, data, label):
'''Decodes the data bytes 'data' of a multibyte command at position
'pos'. The decoded data is prefixed with 'label'.'''
def escape(b):
return '{:02X}'.format(b)
data = ' '.join([escape(b) for b in data])
if (ann == Ann.FIFO_WRITE) or (ann == Ann.FIFO_READ):
text = '{}{}'.format(label, data)
else:
text = '{} = {}'.format(label, data)
self.putp(pos, ann, text)
def finish_command(self, pos):
'''Decodes the remaining data bytes at position 'pos'.'''
if self.cmd == 'Write':
self.decode_reg(pos, Ann.BURST_WRITE, self.dat, self.mosi_bytes())
elif self.cmd == 'Read':
self.decode_reg(pos, Ann.BURST_READ, self.dat, self.miso_bytes())
elif self.cmd == 'WriteB':
self.decode_reg(pos, Ann.BURST_WRITEB, self.dat, self.mosi_bytes())
elif self.cmd == 'ReadB':
self.decode_reg(pos, Ann.BURST_READB, self.dat, self.miso_bytes())
elif self.cmd == 'WriteT':
self.decode_reg(pos, Ann.BURST_WRITET, self.dat, self.mosi_bytes())
elif self.cmd == 'ReadT':
self.decode_reg(pos, Ann.BURST_READT, self.dat, self.miso_bytes())
elif self.cmd == 'FIFO Write':
self.decode_reg(pos, Ann.FIFO_WRITE, self.dat, self.mosi_bytes())
elif self.cmd == 'FIFO Read':
self.decode_reg(pos, Ann.FIFO_READ, self.dat, self.miso_bytes())
elif self.cmd == 'Cmd':
self.decode_reg(pos, Ann.DIRECTCMD, self.dat, self.mosi_bytes())
else:
self.warn(pos, 'Unhandled command {}'.format(self.cmd))
def decode(self, ss, es, data):
if not self.requirements_met:
return
ptype, data1, data2 = data
if ptype == 'CS-CHANGE':
if data1 is None:
if data2 is None:
self.requirements_met = False
raise ChannelError('CS# pin required.')
elif data2 == 1:
self.cs_was_released = True
if data1 == 0 and data2 == 1:
# Rising edge, the complete command is transmitted, process
# the bytes that were sent after the command byte.
if self.cmd:
# Check if we got the minimum number of data bytes
# after the command byte.
if len(self.mb) < self.min:
self.warn((ss, ss), 'Missing data bytes')
elif self.mb:
self.finish_command(Pos(self.ss_mb, self.es_mb))
self.next()
self.cs_was_released = True
elif ptype == 'DATA' and self.cs_was_released:
mosi, miso = data1, data2
pos = Pos(ss, es)
if miso is None or mosi is None:
self.requirements_met = False
raise ChannelError('Both MISO and MOSI pins are required.')
if self.first:
# Register Space-B Access 0b11111011 0xFB => 'Space B'
if mosi == 0xFB:
self.first = True
# First MOSI byte 'Space B' command.
self.decode_command(pos, mosi)
# First MISO byte is always the status register.
#self.decode_reg(pos, ANN_STATUS, 'STATUS', [miso])
# Register TestAccess Access 0b11111100 0xFC => 'TestAccess'
elif mosi == 0xFC:
self.first = True
# First MOSI byte 'TestAccess' command.
self.decode_command(pos, mosi)
# First MISO byte is always the status register.
#self.decode_reg(pos, ANN_STATUS, 'STATUS', [miso])
else:
self.first = False
# First MOSI byte is always the command.
self.decode_command(pos, mosi)
# First MISO byte is always the status register.
#self.decode_reg(pos, ANN_STATUS, 'STATUS', [miso])
else:
if not self.cmd or len(self.mb) >= self.max:
self.warn(pos, 'Excess byte')
else:
# Collect the bytes after the command byte.
if self.ss_mb == -1:
self.ss_mb = ss
self.es_mb = es
self.mb.append(Data(mosi, miso))
|