1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2015 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
from .lists import *
def cmd_annotation_classes():
return tuple([tuple([cmd[0].lower(), cmd[1]]) for cmd in cmds.values()])
def decode_status_reg(data):
# TODO: Additional per-bit(s) self.put() calls with correct start/end.
# Bits[0:0]: WIP (write in progress)
s = 'W' if (data & (1 << 0)) else 'No w'
ret = '%srite operation in progress.\n' % s
# Bits[1:1]: WEL (write enable latch)
s = '' if (data & (1 << 1)) else 'not '
ret += 'Internal write enable latch is %sset.\n' % s
# Bits[5:2]: Block protect bits
# TODO: More detailed decoding (chip-dependent).
ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2)
# Bits[6:6]: Continuously program mode (CP mode)
s = '' if (data & (1 << 6)) else 'not '
ret += 'Device is %sin continuously program mode (CP mode).\n' % s
# Bits[7:7]: SRWD (status register write disable)
s = 'not ' if (data & (1 << 7)) else ''
ret += 'Status register writes are %sallowed.\n' % s
return ret
class Decoder(srd.Decoder):
api_version = 2
id = 'spiflash'
name = 'SPI flash'
longname = 'SPI flash chips'
desc = 'xx25 series SPI (NOR) flash chip protocol.'
license = 'gplv2+'
inputs = ['spi']
outputs = ['spiflash']
annotations = cmd_annotation_classes() + (
('bits', 'Bits'),
('bits2', 'Bits2'),
('warnings', 'Warnings'),
)
annotation_rows = (
('bits', 'Bits', (24, 25)),
('commands', 'Commands', tuple(range(23 + 1))),
('warnings', 'Warnings', (26,)),
)
options = (
{'id': 'chip', 'desc': 'Chip', 'default': tuple(chips.keys())[0],
'values': tuple(chips.keys())},
)
def __init__(self):
self.state = None
self.cmdstate = 1
self.addr = 0
self.data = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.chip = chips[self.options['chip']]
def putx(self, data):
# Simplification, most annotations span exactly one SPI byte/packet.
self.put(self.ss, self.es, self.out_ann, data)
def putb(self, data):
self.put(self.block_ss, self.block_es, self.out_ann, data)
def handle_wren(self, mosi, miso):
self.putx([0, ['Command: %s' % cmds[self.state][1]]])
self.state = None
def handle_wrdi(self, mosi, miso):
pass # TODO
# TODO: Check/display device ID / name
def handle_rdid(self, mosi, miso):
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.ss_block = self.ss
self.putx([2, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate == 2:
# Byte 2: Slave sends the JEDEC manufacturer ID.
self.putx([2, ['Manufacturer ID: 0x%02x' % miso]])
elif self.cmdstate == 3:
# Byte 3: Slave sends the memory type (0x20 for this chip).
self.putx([2, ['Memory type: 0x%02x' % miso]])
elif self.cmdstate == 4:
# Byte 4: Slave sends the device ID.
self.device_id = miso
self.putx([2, ['Device ID: 0x%02x' % miso]])
if self.cmdstate == 4:
# TODO: Check self.device_id is valid & exists in device_names.
# TODO: Same device ID? Check!
d = 'Device: Macronix %s' % device_name[self.device_id]
self.put(self.ss_block, self.es, self.out_ann, [0, [d]])
self.state = None
else:
self.cmdstate += 1
def handle_rdsr(self, mosi, miso):
# Read status register: Master asserts CS#, sends RDSR command,
# reads status register byte. If CS# is kept asserted, the status
# register can be read continuously / multiple times in a row.
# When done, the master de-asserts CS# again.
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.putx([3, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate >= 2:
# Bytes 2-x: Slave sends status register as long as master clocks.
if self.cmdstate <= 3: # TODO: While CS# asserted.
self.putx([24, ['Status register: 0x%02x' % miso]])
self.putx([25, [decode_status_reg(miso)]])
if self.cmdstate == 3: # TODO: If CS# got de-asserted.
self.state = None
return
self.cmdstate += 1
def handle_wrsr(self, mosi, miso):
pass # TODO
def handle_read(self, mosi, miso):
# Read data bytes: Master asserts CS#, sends READ command, sends
# 3-byte address, reads >= 1 data bytes, de-asserts CS#.
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.putx([5, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate in (2, 3, 4):
# Bytes 2/3/4: Master sends read address (24bits, MSB-first).
self.addr |= (mosi << ((4 - self.cmdstate) * 8))
# self.putx([0, ['Read address, byte %d: 0x%02x' % \
# (4 - self.cmdstate, mosi)]])
if self.cmdstate == 4:
self.putx([24, ['Read address: 0x%06x' % self.addr]])
self.addr = 0
elif self.cmdstate >= 5:
# Bytes 5-x: Master reads data bytes (until CS# de-asserted).
# TODO: For now we hardcode 256 bytes per READ command.
if self.cmdstate <= 256 + 4: # TODO: While CS# asserted.
self.data.append(miso)
# self.putx([0, ['New read byte: 0x%02x' % miso]])
if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted.
# s = ', '.join(map(hex, self.data))
s = ''.join(map(chr, self.data))
self.putx([24, ['Read data']])
self.putx([25, ['Read data: %s' % s]])
self.data = []
self.state = None
return
self.cmdstate += 1
def handle_fast_read(self, mosi, miso):
# Fast read: Master asserts CS#, sends FAST READ command, sends
# 3-byte address + 1 dummy byte, reads >= 1 data bytes, de-asserts CS#.
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.putx([5, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate in (2, 3, 4):
# Bytes 2/3/4: Master sends read address (24bits, MSB-first).
self.putx([24, ['AD%d: 0x%02x' % (self.cmdstate - 1, mosi)]])
if self.cmdstate == 2:
self.block_ss = self.ss
self.addr |= (mosi << ((4 - self.cmdstate) * 8))
elif self.cmdstate == 5:
self.putx([24, ['Dummy byte: 0x%02x' % mosi]])
self.block_es = self.es
self.putb([5, ['Read address: 0x%06x' % self.addr]])
self.addr = 0
elif self.cmdstate >= 6:
# Bytes 6-x: Master reads data bytes (until CS# de-asserted).
# TODO: For now we hardcode 32 bytes per FAST READ command.
if self.cmdstate == 6:
self.block_ss = self.ss
if self.cmdstate <= 32 + 5: # TODO: While CS# asserted.
self.data.append(miso)
if self.cmdstate == 32 + 5: # TODO: If CS# got de-asserted.
self.block_es = self.es
s = ' '.join([hex(b)[2:] for b in self.data])
self.putb([25, ['Read data: %s' % s]])
self.data = []
self.state = None
return
self.cmdstate += 1
def handle_2read(self, mosi, miso):
pass # TODO
# TODO: Warn/abort if we don't see the necessary amount of bytes.
# TODO: Warn if WREN was not seen before.
def handle_se(self, mosi, miso):
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.addr = 0
self.ss_block = self.ss
self.putx([8, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate in (2, 3, 4):
# Bytes 2/3/4: Master sends sector address (24bits, MSB-first).
self.addr |= (mosi << ((4 - self.cmdstate) * 8))
# self.putx([0, ['Sector address, byte %d: 0x%02x' % \
# (4 - self.cmdstate, mosi)]])
if self.cmdstate == 4:
d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr)
self.put(self.ss_block, self.es, self.out_ann, [24, [d]])
# TODO: Max. size depends on chip, check that too if possible.
if self.addr % 4096 != 0:
# Sector addresses must be 4K-aligned (same for all 3 chips).
d = 'Warning: Invalid sector address!'
self.put(self.ss_block, self.es, self.out_ann, [101, [d]])
self.state = None
else:
self.cmdstate += 1
def handle_be(self, mosi, miso):
pass # TODO
def handle_ce(self, mosi, miso):
pass # TODO
def handle_ce2(self, mosi, miso):
pass # TODO
def handle_pp(self, mosi, miso):
# Page program: Master asserts CS#, sends PP command, sends 3-byte
# page address, sends >= 1 data bytes, de-asserts CS#.
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.putx([12, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate in (2, 3, 4):
# Bytes 2/3/4: Master sends page address (24bits, MSB-first).
self.addr |= (mosi << ((4 - self.cmdstate) * 8))
# self.putx([0, ['Page address, byte %d: 0x%02x' % \
# (4 - self.cmdstate, mosi)]])
if self.cmdstate == 4:
self.putx([24, ['Page address: 0x%06x' % self.addr]])
self.addr = 0
elif self.cmdstate >= 5:
# Bytes 5-x: Master sends data bytes (until CS# de-asserted).
# TODO: For now we hardcode 256 bytes per page / PP command.
if self.cmdstate <= 256 + 4: # TODO: While CS# asserted.
self.data.append(mosi)
# self.putx([0, ['New data byte: 0x%02x' % mosi]])
if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted.
# s = ', '.join(map(hex, self.data))
s = ''.join(map(chr, self.data))
self.putx([24, ['Page data']])
self.putx([25, ['Page data: %s' % s]])
self.data = []
self.state = None
return
self.cmdstate += 1
def handle_cp(self, mosi, miso):
pass # TODO
def handle_dp(self, mosi, miso):
pass # TODO
def handle_rdp_res(self, mosi, miso):
pass # TODO
def handle_rems(self, mosi, miso):
if self.cmdstate == 1:
# Byte 1: Master sends command ID.
self.ss_block = self.ss
self.putx([16, ['Command: %s' % cmds[self.state][1]]])
elif self.cmdstate in (2, 3):
# Bytes 2/3: Master sends two dummy bytes.
# TODO: Check dummy bytes? Check reply from device?
self.putx([24, ['Dummy byte: %s' % mosi]])
elif self.cmdstate == 4:
# Byte 4: Master sends 0x00 or 0x01.
# 0x00: Master wants manufacturer ID as first reply byte.
# 0x01: Master wants device ID as first reply byte.
self.manufacturer_id_first = True if (mosi == 0x00) else False
d = 'manufacturer' if (mosi == 0x00) else 'device'
self.putx([24, ['Master wants %s ID first' % d]])
elif self.cmdstate == 5:
# Byte 5: Slave sends manufacturer ID (or device ID).
self.ids = [miso]
d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
self.putx([24, ['%s ID' % d]])
elif self.cmdstate == 6:
# Byte 6: Slave sends device ID (or manufacturer ID).
self.ids.append(miso)
d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
self.putx([24, ['%s ID' % d]])
if self.cmdstate == 6:
id = self.ids[1] if self.manufacturer_id_first else self.ids[0]
self.putx([24, ['Device: Macronix %s' % device_name[id]]])
self.state = None
else:
self.cmdstate += 1
def handle_rems2(self, mosi, miso):
pass # TODO
def handle_enso(self, mosi, miso):
pass # TODO
def handle_exso(self, mosi, miso):
pass # TODO
def handle_rdscur(self, mosi, miso):
pass # TODO
def handle_wrscur(self, mosi, miso):
pass # TODO
def handle_esry(self, mosi, miso):
pass # TODO
def handle_dsry(self, mosi, miso):
pass # TODO
def decode(self, ss, es, data):
ptype, mosi, miso = data
# if ptype == 'DATA':
# self.putx([0, ['MOSI: 0x%02x, MISO: 0x%02x' % (mosi, miso)]])
# if ptype == 'CS-CHANGE':
# if mosi == 1 and miso == 0:
# self.putx([0, ['Asserting CS#']])
# elif mosi == 0 and miso == 1:
# self.putx([0, ['De-asserting CS#']])
if ptype != 'DATA':
return
self.ss, self.es = ss, es
# If we encountered a known chip command, enter the resp. state.
if self.state is None:
self.state = mosi
self.cmdstate = 1
# Handle commands.
if self.state in cmds:
s = 'handle_%s' % cmds[self.state][0].lower().replace('/', '_')
handle_reg = getattr(self, s)
handle_reg(mosi, miso)
else:
self.putx([24, ['Unknown command: 0x%02x' % mosi]])
self.state = None
|