summaryrefslogtreecommitdiff
path: root/decoders/spiflash/pd.py
blob: 5ee22740553efa2ca69ca1cef1f93a02d25006d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2011-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

import sigrokdecode as srd
from .lists import *

L = len(cmds)

# Don't forget to keep this in sync with 'cmds' is lists.py.
class Ann:
    WRSR, PP, READ, WRDI, RDSR, WREN, FAST_READ, SE, RDSCUR, WRSCUR, \
    RDSR2, CE, ESRY, DSRY, WRITE1, WRITE2, REMS, RDID, RDP_RES, CP, ENSO, DP, \
    READ2X, EXSO, CE2, STATUS, BE, REMS2, \
    BIT, FIELD, WARN = range(L + 3)

def cmd_annotation_classes():
    return tuple([tuple([cmd[0].lower(), cmd[1]]) for cmd in cmds.values()])

def decode_dual_bytes(sio0, sio1):
    # Given a byte in SIO0 (MOSI) of even bits and a byte in
    # SIO1 (MISO) of odd bits, return a tuple of two bytes.
    def combine_byte(even, odd):
        result = 0
        for bit in range(4):
            if even & (1 << bit):
                result |= 1 << (bit*2)
            if odd & (1 << bit):
                result |= 1 << ((bit*2) + 1)
        return result
    return (combine_byte(sio0 >> 4, sio1 >> 4), combine_byte(sio0, sio1))

def decode_status_reg(data):
    # TODO: Additional per-bit(s) self.put() calls with correct start/end.

    # Bits[0:0]: WIP (write in progress)
    s = 'W' if (data & (1 << 0)) else 'No w'
    ret = '%srite operation in progress.\n' % s

    # Bits[1:1]: WEL (write enable latch)
    s = '' if (data & (1 << 1)) else 'not '
    ret += 'Internal write enable latch is %sset.\n' % s

    # Bits[5:2]: Block protect bits
    # TODO: More detailed decoding (chip-dependent).
    ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2)

    # Bits[6:6]: Continuously program mode (CP mode)
    s = '' if (data & (1 << 6)) else 'not '
    ret += 'Device is %sin continuously program mode (CP mode).\n' % s

    # Bits[7:7]: SRWD (status register write disable)
    s = 'not ' if (data & (1 << 7)) else ''
    ret += 'Status register writes are %sallowed.\n' % s

    return ret

class Decoder(srd.Decoder):
    api_version = 3
    id = 'spiflash'
    name = 'SPI flash'
    longname = 'SPI flash chips'
    desc = 'xx25 series SPI (NOR) flash chip protocol.'
    license = 'gplv2+'
    inputs = ['spi']
    outputs = []
    tags = ['IC', 'Memory']
    annotations = cmd_annotation_classes() + (
        ('bit', 'Bit'),
        ('field', 'Field'),
        ('warning', 'Warning'),
    )
    annotation_rows = (
        ('bits', 'Bits', (L + 0,)),
        ('fields', 'Fields', (L + 1,)),
        ('commands', 'Commands', tuple(range(len(cmds)))),
        ('warnings', 'Warnings', (L + 2,)),
    )
    options = (
        {'id': 'chip', 'desc': 'Chip', 'default': tuple(chips.keys())[0],
            'values': tuple(chips.keys())},
        {'id': 'format', 'desc': 'Data format', 'default': 'hex',
            'values': ('hex', 'ascii')},
    )

    def __init__(self):
        self.reset()

    def reset(self):
        self.device_id = -1
        self.on_end_transaction = None
        self.end_current_transaction()
        self.writestate = 0

        # Build dict mapping command keys to handler functions. Each
        # command in 'cmds' (defined in lists.py) has a matching
        # handler self.handle_<shortname>.
        def get_handler(cmd):
            s = 'handle_%s' % cmds[cmd][0].lower().replace('/', '_')
            return getattr(self, s)
        self.cmd_handlers = dict((cmd, get_handler(cmd)) for cmd in cmds.keys())

    def end_current_transaction(self):
        if self.on_end_transaction is not None: # Callback for CS# transition.
            self.on_end_transaction()
            self.on_end_transaction = None
        self.state = None
        self.cmdstate = 1
        self.addr = 0
        self.data = []

    def start(self):
        self.out_ann = self.register(srd.OUTPUT_ANN)
        self.chip = chips[self.options['chip']]
        self.vendor = self.options['chip'].split('_')[0]

    def putx(self, data):
        # Simplification, most annotations span exactly one SPI byte/packet.
        self.put(self.ss, self.es, self.out_ann, data)

    def putf(self, data):
        self.put(self.ss_field, self.es_field, self.out_ann, data)

    def putc(self, data):
        self.put(self.ss_cmd, self.es_cmd, self.out_ann, data)

    def device(self):
        return device_name[self.vendor].get(self.device_id, 'Unknown')

    def vendor_device(self):
        return '%s %s' % (self.chip['vendor'], self.device())

    def cmd_ann_list(self):
        x, s = cmds[self.state][0], cmds[self.state][1]
        return ['Command: %s (%s)' % (s, x), 'Command: %s' % s,
                'Cmd: %s' % s, 'Cmd: %s' % x, x]

    def cmd_vendor_dev_list(self):
        c, d = cmds[self.state], 'Device = %s' % self.vendor_device()
        return ['%s (%s): %s' % (c[1], c[0], d), '%s: %s' % (c[1], d),
                '%s: %s' % (c[0], d), d, self.vendor_device()]

    def emit_cmd_byte(self):
        self.ss_cmd = self.ss
        self.putx([Ann.FIELD, self.cmd_ann_list()])
        self.addr = 0

    def emit_addr_bytes(self, mosi):
        self.addr |= (mosi << ((4 - self.cmdstate) * 8))
        b = ((3 - (self.cmdstate - 2)) * 8) - 1
        self.putx([Ann.BIT,
            ['Address bits %d..%d: 0x%02x' % (b, b - 7, mosi),
             'Addr bits %d..%d: 0x%02x' % (b, b - 7, mosi),
             'Addr bits %d..%d' % (b, b - 7), 'A%d..A%d' % (b, b - 7)]])
        if self.cmdstate == 2:
            self.ss_field = self.ss
        if self.cmdstate == 4:
            self.es_field = self.es
            self.putf([Ann.FIELD, ['Address: 0x%06x' % self.addr,
                'Addr: 0x%06x' % self.addr, '0x%06x' % self.addr]])

    def handle_wren(self, mosi, miso):
        self.putx([Ann.WREN, self.cmd_ann_list()])
        self.writestate = 1

    def handle_wrdi(self, mosi, miso):
        self.putx([Ann.WRDI, self.cmd_ann_list()])
        self.writestate = 0

    def handle_rdid(self, mosi, miso):
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate == 2:
            # Byte 2: Slave sends the JEDEC manufacturer ID.
            self.putx([Ann.FIELD, ['Manufacturer ID: 0x%02x' % miso]])
        elif self.cmdstate == 3:
            # Byte 3: Slave sends the memory type.
            self.putx([Ann.FIELD, ['Memory type: 0x%02x' % miso]])
        elif self.cmdstate == 4:
            # Byte 4: Slave sends the device ID.
            self.device_id = miso
            self.putx([Ann.FIELD, ['Device ID: 0x%02x' % miso]])

        if self.cmdstate == 4:
            self.es_cmd = self.es
            self.putc([Ann.RDID, self.cmd_vendor_dev_list()])
            self.state = None
        else:
            self.cmdstate += 1

    def handle_rdsr(self, mosi, miso):
        # Read status register: Master asserts CS#, sends RDSR command,
        # reads status register byte. If CS# is kept asserted, the status
        # register can be read continuously / multiple times in a row.
        # When done, the master de-asserts CS# again.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate >= 2:
            # Bytes 2-x: Slave sends status register as long as master clocks.
            self.es_cmd = self.es
            self.putx([Ann.BIT, [decode_status_reg(miso)]])
            self.putx([Ann.FIELD, ['Status register']])
            self.putc([Ann.RDSR, self.cmd_ann_list()])
            # Set write latch state.
            self.writestate = 1 if (miso & (1 << 1)) else 0
        self.cmdstate += 1

    def handle_rdsr2(self, mosi, miso):
        # Read status register 2: Master asserts CS#, sends RDSR2 command,
        # reads status register 2 byte. If CS# is kept asserted, the status
        # register 2 can be read continuously / multiple times in a row.
        # When done, the master de-asserts CS# again.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate >= 2:
            # Bytes 2-x: Slave sends status register 2 as long as master clocks.
            self.es_cmd = self.es
            # TODO: Decode status register 2 correctly.
            self.putx([Ann.BIT, [decode_status_reg(miso)]])
            self.putx([Ann.FIELD, ['Status register 2']])
            self.putc([Ann.RDSR2, self.cmd_ann_list()])
        self.cmdstate += 1

    def handle_wrsr(self, mosi, miso):
        # Write status register: Master asserts CS#, sends WRSR command,
        # writes 1 or 2 status register byte(s).
        # When done, the master de-asserts CS# again. If this doesn't happen
        # the WRSR command will not be executed.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate == 2:
            # Byte 2: Master sends status register 1.
            self.putx([Ann.BIT, [decode_status_reg(mosi)]])
            self.putx([Ann.FIELD, ['Status register 1']])
            # Set write latch state.
            self.writestate = 1 if (miso & (1 << 1)) else 0
        elif self.cmdstate == 3:
            # Byte 3: Master sends status register 2.
            # TODO: Decode status register 2 correctly.
            self.putx([Ann.BIT, [decode_status_reg(mosi)]])
            self.putx([Ann.FIELD, ['Status register 2']])
            self.es_cmd = self.es
            self.putc([Ann.WRSR, self.cmd_ann_list()])
        self.cmdstate += 1

    def handle_read(self, mosi, miso):
        # Read data bytes: Master asserts CS#, sends READ command, sends
        # 3-byte address, reads >= 1 data bytes, de-asserts CS#.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate in (2, 3, 4):
            # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
            self.emit_addr_bytes(mosi)
        elif self.cmdstate >= 5:
            # Bytes 5-x: Master reads data bytes (until CS# de-asserted).
            self.es_field = self.es # Will be overwritten for each byte.
            if self.cmdstate == 5:
                self.ss_field = self.ss
                self.on_end_transaction = lambda: self.output_data_block('Data', Ann.READ)
            self.data.append(miso)
        self.cmdstate += 1

    def handle_write_common(self, mosi, miso, ann):
        # Write data bytes: Master asserts CS#, sends WRITE command, sends
        # 3-byte address, writes >= 1 data bytes, de-asserts CS#.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
            if self.writestate == 0:
                self.putc([Ann.WARN, ['Warning: WREN might be missing']])
        elif self.cmdstate in (2, 3, 4):
            # Bytes 2/3/4: Master sends write address (24bits, MSB-first).
            self.emit_addr_bytes(mosi)
        elif self.cmdstate >= 5:
            # Bytes 5-x: Master writes data bytes (until CS# de-asserted).
            self.es_field = self.es # Will be overwritten for each byte.
            if self.cmdstate == 5:
                self.ss_field = self.ss
                self.on_end_transaction = lambda: self.output_data_block('Data', ann)
            self.data.append(mosi)
        self.cmdstate += 1

    def handle_write1(self, mosi, miso):
        self.handle_write_common(mosi, miso, Ann.WRITE1)

    def handle_write2(self, mosi, miso):
        self.handle_write_common(mosi, miso, Ann.WRITE2)

    def handle_fast_read(self, mosi, miso):
        # Fast read: Master asserts CS#, sends FAST READ command, sends
        # 3-byte address + 1 dummy byte, reads >= 1 data bytes, de-asserts CS#.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate in (2, 3, 4):
            # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
            self.emit_addr_bytes(mosi)
        elif self.cmdstate == 5:
            self.putx([Ann.BIT, ['Dummy byte: 0x%02x' % mosi]])
        elif self.cmdstate >= 6:
            # Bytes 6-x: Master reads data bytes (until CS# de-asserted).
            self.es_field = self.es # Will be overwritten for each byte.
            if self.cmdstate == 6:
                self.ss_field = self.ss
                self.on_end_transaction = lambda: self.output_data_block('Data', Ann.FAST_READ)
            self.data.append(miso)
        self.cmdstate += 1

    def handle_2read(self, mosi, miso):
        # 2x I/O read (fast read dual I/O): Master asserts CS#, sends 2READ
        # command, sends 3-byte address + 1 dummy byte, reads >= 1 data bytes,
        # de-asserts CS#. All data after the command is sent via two I/O pins.
        # MOSI = SIO0 = even bits, MISO = SIO1 = odd bits.
        if self.cmdstate != 1:
            b1, b2 = decode_dual_bytes(mosi, miso)
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate == 2:
            # Bytes 2/3(/4): Master sends read address (24bits, MSB-first).
            # Handle bytes 2 and 3 here.
            self.emit_addr_bytes(b1)
            self.cmdstate = 3
            self.emit_addr_bytes(b2)
        elif self.cmdstate == 4:
            # Byte 5: Dummy byte. Also handle byte 4 (address LSB) here.
            self.emit_addr_bytes(b1)
            self.cmdstate = 5
            self.putx([Ann.BIT, ['Dummy byte: 0x%02x' % b2]])
        elif self.cmdstate >= 6:
            # Bytes 6-x: Master reads data bytes (until CS# de-asserted).
            self.es_field = self.es # Will be overwritten for each byte.
            if self.cmdstate == 6:
                self.ss_field = self.ss
                self.on_end_transaction = lambda: self.output_data_block('Data', Ann.READ2X)
            self.data.append(b1)
            self.data.append(b2)
        self.cmdstate += 1

    def handle_status(self, mosi, miso):
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
            self.on_end_transaction = lambda: self.putc([Ann.STATUS, [cmds[self.state][1]]])
        else:
            # Will be overwritten for each byte.
            self.es_cmd = self.es
            self.es_field = self.es
            if self.cmdstate == 2:
                self.ss_field = self.ss
            self.putx([Ann.BIT, ['Status register byte %d: 0x%02x' % ((self.cmdstate % 2) + 1, miso)]])
        self.cmdstate += 1

    # TODO: Warn/abort if we don't see the necessary amount of bytes.
    def handle_se(self, mosi, miso):
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
            if self.writestate == 0:
                self.putx([Ann.WARN, ['Warning: WREN might be missing']])
        elif self.cmdstate in (2, 3, 4):
            # Bytes 2/3/4: Master sends sector address (24bits, MSB-first).
            self.emit_addr_bytes(mosi)

        if self.cmdstate == 4:
            self.es_cmd = self.es
            d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr)
            self.putc([Ann.SE, [d]])
            # TODO: Max. size depends on chip, check that too if possible.
            if self.addr % 4096 != 0:
                # Sector addresses must be 4K-aligned (same for all 3 chips).
                self.putc([Ann.WARN, ['Warning: Invalid sector address!']])
            self.state = None
        else:
            self.cmdstate += 1

    def handle_be(self, mosi, miso):
        pass # TODO

    def handle_ce(self, mosi, miso):
        self.putx([Ann.CE, self.cmd_ann_list()])
        if self.writestate == 0:
            self.putx([Ann.WARN, ['Warning: WREN might be missing']])

    def handle_ce2(self, mosi, miso):
        self.putx([Ann.CE2, self.cmd_ann_list()])
        if self.writestate == 0:
            self.putx([Ann.WARN, ['Warning: WREN might be missing']])

    def handle_pp(self, mosi, miso):
        # Page program: Master asserts CS#, sends PP command, sends 3-byte
        # page address, sends >= 1 data bytes, de-asserts CS#.
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate in (2, 3, 4):
            # Bytes 2/3/4: Master sends page address (24bits, MSB-first).
            self.emit_addr_bytes(mosi)
        elif self.cmdstate >= 5:
            # Bytes 5-x: Master sends data bytes (until CS# de-asserted).
            self.es_field = self.es # Will be overwritten for each byte.
            if self.cmdstate == 5:
                self.ss_field = self.ss
                self.on_end_transaction = lambda: self.output_data_block('Data', Ann.PP)
            self.data.append(mosi)
        self.cmdstate += 1

    def handle_cp(self, mosi, miso):
        pass # TODO

    def handle_dp(self, mosi, miso):
        pass # TODO

    def handle_rdp_res(self, mosi, miso):
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate in (2, 3, 4):
            # Bytes 2/3/4: Master sends three dummy bytes.
            self.putx([Ann.FIELD, ['Dummy byte: %02x' % mosi]])
        elif self.cmdstate == 5:
            # Byte 5: Slave sends device ID.
            self.es_cmd = self.es
            self.device_id = miso
            self.putx([Ann.FIELD, ['Device ID: %s' % self.device()]])
            d = 'Device = %s' % self.vendor_device()
            self.putc([Ann.RDP_RES, self.cmd_vendor_dev_list()])
            self.state = None
        self.cmdstate += 1

    def handle_rems(self, mosi, miso):
        if self.cmdstate == 1:
            # Byte 1: Master sends command ID.
            self.emit_cmd_byte()
        elif self.cmdstate in (2, 3):
            # Bytes 2/3: Master sends two dummy bytes.
            self.putx([Ann.FIELD, ['Dummy byte: 0x%02x' % mosi]])
        elif self.cmdstate == 4:
            # Byte 4: Master sends 0x00 or 0x01.
            # 0x00: Master wants manufacturer ID as first reply byte.
            # 0x01: Master wants device ID as first reply byte.
            self.manufacturer_id_first = True if (mosi == 0x00) else False
            d = 'manufacturer' if (mosi == 0x00) else 'device'
            self.putx([Ann.FIELD, ['Master wants %s ID first' % d]])
        elif self.cmdstate == 5:
            # Byte 5: Slave sends manufacturer ID (or device ID).
            self.ids = [miso]
            d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
            self.putx([Ann.FIELD, ['%s ID: 0x%02x' % (d, miso)]])
        elif self.cmdstate == 6:
            # Byte 6: Slave sends device ID (or manufacturer ID).
            self.ids.append(miso)
            d = 'Device' if self.manufacturer_id_first else 'Manufacturer'
            self.putx([Ann.FIELD, ['%s ID: 0x%02x' % (d, miso)]])

        if self.cmdstate == 6:
            id_ = self.ids[1] if self.manufacturer_id_first else self.ids[0]
            self.device_id = id_
            self.es_cmd = self.es
            self.putc([Ann.REMS, self.cmd_vendor_dev_list()])
            self.state = None
        else:
            self.cmdstate += 1

    def handle_rems2(self, mosi, miso):
        pass # TODO

    def handle_enso(self, mosi, miso):
        pass # TODO

    def handle_exso(self, mosi, miso):
        pass # TODO

    def handle_rdscur(self, mosi, miso):
        pass # TODO

    def handle_wrscur(self, mosi, miso):
        pass # TODO

    def handle_esry(self, mosi, miso):
        pass # TODO

    def handle_dsry(self, mosi, miso):
        pass # TODO

    def output_data_block(self, label, idx):
        # Print accumulated block of data
        # (called on CS# de-assert via self.on_end_transaction callback).
        self.es_cmd = self.es # End on the CS# de-assert sample.
        if self.options['format'] == 'hex':
            s = ' '.join([('%02x' % b) for b in self.data])
        else:
            s = ''.join(map(chr, self.data))
        self.putf([Ann.FIELD, ['%s (%d bytes)' % (label, len(self.data))]])
        self.putc([idx, ['%s (addr 0x%06x, %d bytes): %s' % \
                   (cmds[self.state][1], self.addr, len(self.data), s)]])

    def decode(self, ss, es, data):
        ptype, mosi, miso = data

        self.ss, self.es = ss, es

        if ptype == 'CS-CHANGE':
            self.end_current_transaction()

        if ptype != 'DATA':
            return

        # If we encountered a known chip command, enter the resp. state.
        if self.state is None:
            self.state = mosi
            self.cmdstate = 1

        # Handle commands.
        try:
            self.cmd_handlers[self.state](mosi, miso)
        except KeyError:
            self.putx([Ann.BIT, ['Unknown command: 0x%02x' % mosi]])
            self.state = None