1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Anthony Symons <antus@pcmhacking.net>
## Copyright (C) 2023 Gerhard Sittig <gerhard.sittig@gmx.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack_msb
# VPW Timings. From the SAE J1850 1995 rev section 23.406 documentation.
# Ideal, minimum and maximum tolerances.
VPW_SOF = 200
VPW_SOFL = 164
VPW_SOFH = 245 # 240 by the spec, 245 so a 60us 4x sample will pass
VPW_LONG = 128
VPW_LONGL = 97
VPW_LONGH = 170 # 164 by the spec but 170 for low sample rate tolerance.
VPW_SHORT = 64
VPW_SHORTL = 24 # 35 by the spec, 24 to allow down to 6us as measured in practice for 4x @ 1mhz sampling
VPW_SHORTH = 97
VPW_IFS = 240
class SamplerateError(Exception):
pass
(
ANN_SOF, ANN_BIT, ANN_IFS, ANN_BYTE,
ANN_PRIO, ANN_DEST, ANN_SRC, ANN_MODE, ANN_DATA, ANN_CSUM,
ANN_M1_PID,
ANN_WARN,
) = range(12)
class Decoder(srd.Decoder):
api_version = 3
id = 'sae_j1850_vpw'
name = 'SAE J1850 VPW'
longname = 'SAE J1850 VPW.'
desc = 'SAE J1850 Variable Pulse Width 1x and 4x.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['Automotive']
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
annotations = (
('sof', 'SOF'),
('bit', 'Bit'),
('ifs', 'EOF/IFS'),
('byte', 'Byte'),
('prio', 'Priority'),
('dest', 'Destination'),
('src', 'Source'),
('mode', 'Mode'),
('data', 'Data'),
('csum', 'Checksum'),
('m1_pid', 'Pid'),
('warn', 'Warning'),
)
annotation_rows = (
('bits', 'Bits', (ANN_SOF, ANN_BIT, ANN_IFS,)),
('bytes', 'Bytes', (ANN_BYTE,)),
('fields', 'Fields', (ANN_PRIO, ANN_DEST, ANN_SRC, ANN_MODE, ANN_DATA, ANN_CSUM,)),
('values', 'Values', (ANN_M1_PID,)),
('warns', 'Warnings', (ANN_WARN,)),
)
# TODO Add support for options? Polarity. Glitch length.
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.active = 0 # Signal polarity. Needs to become an option?
self.bits = []
self.fields = {}
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def putg(self, ss, es, cls, texts):
self.put(ss, es, self.out_ann, [cls, texts])
def invalidate_frame_details(self):
self.bits.clear()
self.fields.clear()
def handle_databytes(self, fields, data):
# TODO Deep inspection of header fields and data values, including
# checksum verification results.
mode = fields.get('mode', None)
if mode is None:
return
if mode == 1:
# An earlier implementation commented that for mode 1 the
# first data byte would be the PID. But example captures
# have no data bytes in packets for that mode. This position
# is taken by the checksum. Is this correct?
pid = data[0] if data else fields.get('csum', None)
if pid is None:
text = ['PID missing']
self.putg(ss, es, ANN_WARN, text)
else:
byte_text = '{:02x}'.format(pid)
self.putg(ss, es, ANN_M1_PID, [byte_text])
def handle_byte(self, ss, es, b):
# Annotate all raw byte values. Inspect and process the first
# bytes in a frame already. Cease inspection and only accumulate
# all other bytes after the mode. The checksum's position and
# thus the data bytes' span will only be known when EOF or IFS
# were seen. Implementor's note: This method just identifies
# header fields. Processing is left to the .handle_databytes()
# method. Until then validity will have been checked, too (CS).
byte_text = '{:02x}'.format(b)
self.putg(ss, es, ANN_BYTE, [byte_text])
if not 'prio' in self.fields:
self.fields.update({'prio': b})
self.putg(ss, es, ANN_PRIO, [byte_text])
return
if not 'dest' in self.fields:
self.fields.update({'dest': b})
self.putg(ss, es, ANN_DEST, [byte_text])
return
if not 'src' in self.fields:
self.fields.update({'src': b})
self.putg(ss, es, ANN_SRC, [byte_text])
return
if not 'mode' in self.fields:
self.fields.update({'mode': b})
self.putg(ss, es, ANN_MODE, [byte_text])
return
if not 'data' in self.fields:
self.fields.update({'data': [], 'csum': None})
self.fields['data'].append((b, ss, es))
def handle_sof(self, ss, es, speed):
text = ['{speed:d}x SOF', 'S{speed:d}', 'S']
text = [f.format(speed = speed) for f in text]
self.putg(ss, es, ANN_SOF, text)
self.invalidate_frame_details()
self.fields.update({'speed': speed})
def handle_bit(self, ss, es, b):
self.bits.append((b, ss, es))
self.putg(ss, es, ANN_BIT, ['{:d}'.format(b)])
if len(self.bits) < 8:
return
ss, es = self.bits[0][1], self.bits[-1][2]
b = bitpack_msb(self.bits, 0)
self.bits.clear()
self.handle_byte(ss, es, b)
def handle_eof(self, ss, es, is_ifs = False):
# EOF or IFS were seen. Post process the data bytes sequence.
# Separate the checksum from the data bytes. Emit annotations.
# Pass data bytes and header fields to deeper inspection.
data = self.fields.get('data', {})
if not data:
text = ['Short data phase', 'Data']
self.putg(ss, es, ANN_WARN, text)
csum = None
if len(data) >= 1:
csum, ss_csum, es_csum = data.pop()
self.fields.update({'csum': csum})
# TODO Verify checksum's correctness?
if data:
ss_data, es_data = data[0][1], data[-1][2]
text = ' '.join(['{:02x}'.format(b[0]) for b in data])
self.putg(ss_data, es_data, ANN_DATA, [text])
if csum is not None:
text = '{:02x}'.format(csum)
self.putg(ss_csum, es_csum, ANN_CSUM, [text])
text = ['IFS', 'I'] if is_ifs else ['EOF', 'E']
self.putg(ss, es, ANN_IFS, text)
self.handle_databytes(self.fields, data);
self.invalidate_frame_details()
def handle_unknown(self, ss, es):
text = ['Unknown condition', 'Unknown', 'UNK']
self.putg(ss, es, ANN_WARN, text)
self.invalidate_frame_details()
def usecs_to_samples(self, us):
us *= 1e-6
us *= self.samplerate
return int(us)
def samples_to_usecs(self, n):
n /= self.samplerate
n *= 1000.0 * 1000.0
return int(n)
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
# Get the distance between edges. Classify the distance
# to derive symbols and data bit values. Prepare waiting
# for an interframe gap as well, while this part of the
# condition is optional (switches in and out at runtime).
conds_edge = {0: 'e'}
conds_edge_only = [conds_edge]
conds_edge_idle = [conds_edge, {'skip': 0}]
conds = conds_edge_only
self.wait(conds)
es = self.samplenum
spd = None
while True:
ss = es
pin, = self.wait(conds)
es = self.samplenum
count = es - ss
t = self.samples_to_usecs(count)
# Synchronization to the next frame. Wait for SOF.
# Silently keep synchronizing until SOF was seen.
if spd is None:
if not self.matched[0]:
continue
if pin != self.active:
continue
# Detect the frame's speed from the SOF length. Adjust
# the expected BIT lengths to the SOF derived speed.
# Arrange for the additional supervision of EOF/IFS.
if t in range(VPW_SOFL // 1, VPW_SOFH // 1):
spd = 1
elif t in range(VPW_SOFL // 4, VPW_SOFH // 4):
spd = 4
else:
continue
short_lower, short_upper = VPW_SHORTL // spd, VPW_SHORTH // spd
long_lower, long_upper = VPW_LONGL // spd, VPW_LONGH // spd
samples = self.usecs_to_samples(VPW_IFS // spd)
conds_edge_idle[-1]['skip'] = samples
conds = conds_edge_idle
# Emit the SOF annotation. Start collecting DATA.
self.handle_sof(ss, es, spd)
continue
# Inside the DATA phase. Get data bits. Handle EOF/IFS.
if len(conds) > 1 and self.matched[1]:
# TODO The current implementation gets here after a
# pre-determined minimum wait time. Does not differ
# between EOF and IFS. An earlier implementation had
# this developer note: EOF=239-280 IFS=281+
self.handle_eof(ss, es)
# Enter the IDLE phase. Wait for the next SOF.
spd = None
conds = conds_edge_only
continue
if t in range(short_lower, short_upper):
value = 1 if pin == self.active else 0
self.handle_bit(ss, es, value)
continue
if t in range(long_lower, long_upper):
value = 0 if pin == self.active else 1
self.handle_bit(ss, es, value)
continue
# Implementation detail: An earlier implementation used to
# ignore everything that was not handled above. This would
# be motivated by the noisy environment the protocol is
# typically used in. This more recent implementation accepts
# short glitches, but by design falls back to synchronization
# to the input stream for other unhandled conditions. This
# wants to improve usability of the decoder, by presenting
# potential issues to the user. The threshold (microseconds
# between edges that are not valid symbols that are handled
# above) is an arbitrary choice.
if t <= 2:
continue
self.handle_unknown(ss, es)
spd = None
conds = conds_edge_only
|