summaryrefslogtreecommitdiff
path: root/decoders/rgb_led_ws281x/pd.py
blob: 5f355942b392d3b751115ab76bf345bdf91fe125 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Vladimir Ermakov <vooon341@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

import sigrokdecode as srd
from common.srdhelper import bitpack_msb

class SamplerateError(Exception):
    pass

( ANN_BIT, ANN_RESET, ANN_RGB, ) = range(3)

class Decoder(srd.Decoder):
    api_version = 3
    id = 'rgb_led_ws281x'
    name = 'RGB LED (WS281x)'
    longname = 'RGB LED string decoder (WS281x)'
    desc = 'RGB LED string protocol (WS281x).'
    license = 'gplv3+'
    inputs = ['logic']
    outputs = []
    tags = ['Display', 'IC']
    channels = (
        {'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'},
    )
    annotations = (
        ('bit', 'Bit'),
        ('reset', 'RESET'),
        ('rgb', 'RGB'),
    )
    annotation_rows = (
        ('bits', 'Bits', (ANN_BIT, ANN_RESET,)),
        ('rgb-vals', 'RGB values', (ANN_RGB,)),
    )
    options = (
        {'id': 'type', 'desc': 'RGB or RGBW', 'default': 'RGB',
         'values': ('RGB', 'RGBW')},
    )

    def __init__(self):
        self.reset()

    def reset(self):
        self.samplerate = None
        self.bits = []

    def start(self):
        self.out_ann = self.register(srd.OUTPUT_ANN)

    def metadata(self, key, value):
        if key == srd.SRD_CONF_SAMPLERATE:
            self.samplerate = value

    def putg(self, ss, es, cls, text):
        self.put(ss, es, self.out_ann, [cls, text])

    def handle_bits(self):
        if len(self.bits) < self.need_bits:
            return
        grb = bitpack_msb(self.bits, 0)
        if self.options['type'] == 'RGB':
            rgb = (grb & 0xff0000) >> 8 | (grb & 0x00ff00) << 8 | (grb & 0x0000ff)
            text = '#{:06x}'.format(rgb)
        else:
            rgb = (grb & 0xff0000) >> 8 | (grb & 0x00ff00) << 8 | (grb & 0xff0000ff)
            text = '#{:08x}'.format(rgb)
        ss_packet, es_packet = self.bits[0][1], self.bits[-1][2]
        self.putg(ss_packet, es_packet, ANN_RGB, [text])
        self.bits.clear()

    def handle_bit(self, ss, es, value, ann_late = False):
        if not ann_late:
            text = ['{:d}'.format(value)]
            self.putg(ss, es, ANN_BIT, text)
        item = (value, ss, es)
        self.bits.append(item)
        self.handle_bits()
        if ann_late:
            text = ['{:d}'.format(value)]
            self.putg(ss, es, ANN_BIT, text)

    def decode(self):
        if not self.samplerate:
            raise SamplerateError('Cannot decode without samplerate.')
        self.need_bits = len(self.options['type']) * 8

        # Either check for edges which communicate bit values, or for
        # long periods of idle level which represent a reset pulse.
        # Track the left-most, right-most, and inner edge positions of
        # a bit. The positive period's width determines the bit's value.
        # Initially synchronize to the input stream by searching for a
        # low period, which preceeds a data bit or starts a reset pulse.
        # Don't annotate the very first reset pulse, but process it. We
        # may not see the right-most edge of a data bit when reset is
        # adjacent to that bit time.
        cond_bit_starts = {0: 'r'}
        cond_inbit_edge = {0: 'f'}
        samples_625ns = int(self.samplerate * 625e-9)
        samples_50us = round(self.samplerate * 50e-6)
        cond_reset_pulse = {'skip': samples_50us + 1}
        conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse]
        ss_bit, inv_bit, es_bit = None, None, None
        pin, = self.wait({0: 'l'})
        inv_bit = self.samplenum
        check_reset = False
        while True:
            pin, = self.wait(conds)

            # Check RESET condition. Manufacturers may disagree on the
            # minimal pulse width. 50us are recommended in datasheets,
            # experiments suggest the limit is around 10us.
            # When the RESET pulse is adjacent to the low phase of the
            # last bit time, we have no appropriate condition for the
            # bit time's end location. That's why this BIT's annotation
            # is shorter (only spans the high phase), and the RESET
            # annotation immediately follows (spans from the falling edge
            # to the end of the minimum RESET pulse width).
            if check_reset and self.matched[2]:
                es_bit = inv_bit
                ss_rst, es_rst = inv_bit, self.samplenum

                if ss_bit and inv_bit and es_bit:
                    # Decode last bit value. Use the last processed bit's
                    # width for comparison when available. Fallback to an
                    # arbitrary threshold otherwise (which can result in
                    # false detection of value 1 for those captures where
                    # high and low pulses are of similar width).
                    duty = inv_bit - ss_bit
                    thres = samples_625ns
                    if self.bits:
                        period = self.bits[-1][2] - self.bits[-1][1]
                        thres = period * 0.5
                    bit_value = 1 if duty >= thres else 0
                    self.handle_bit(ss_bit, inv_bit, bit_value, True)

                if ss_rst and es_rst:
                    text = ['RESET', 'RST', 'R']
                    self.putg(ss_rst, es_rst, ANN_RESET, text)
                check_reset = False

                self.bits.clear()
                ss_bit, inv_bit, es_bit = None, None, None

            # Rising edge starts a bit time. Falling edge ends its high
            # period. Get the previous bit's duty cycle and thus its
            # bit value when the next bit starts.
            if self.matched[0]: # and pin:
                check_reset = False
                if ss_bit and inv_bit:
                    # Got a previous bit? Handle it.
                    es_bit = self.samplenum
                    period = es_bit - ss_bit
                    duty = inv_bit - ss_bit
                    # Ideal duty for T0H: 33%, T1H: 66%.
                    bit_value = 1 if (duty / period) > 0.5 else 0
                    self.handle_bit(ss_bit, es_bit, bit_value)
                ss_bit, inv_bit, es_bit = self.samplenum, None, None
            if self.matched[1]: # and not pin:
                check_reset = True
                inv_bit = self.samplenum