summaryrefslogtreecommitdiff
path: root/decoders/rgb_led_ws281x/pd.py
blob: eda762a8e8d9a920a040b311bfe9d9bd42345bdc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Vladimir Ermakov <vooon341@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

# Implementor's notes on the wire format:
# - World Semi vendor, (Adafruit copy of the) datasheet
#   https://cdn-shop.adafruit.com/datasheets/WS2812.pdf
# - reset pulse is 50us (or more) of low pin level
# - 24bits per WS281x item, 3x 8bits, MSB first, GRB sequence,
#   cascaded WS281x items, all "excess bits" are passed through
# - bit time starts with high period, continues with low period,
#   high to low periods' ratio determines bit value, datasheet
#   mentions 0.35us/0.8us for value 0, 0.7us/0.6us for value 1
#   (huge 150ns tolerances, un-even 0/1 value length, hmm)
# - experience suggests the timing "is variable", rough estimation
#   often is good enough, microcontroller firmware got away with
#   four quanta per bit time, or even with three quanta (30%/60%),
#   Adafruit learn article suggests 1.2us total and 0.4/0.8 or
#   0.8/0.4 high/low parts, four quanta are easier to handle when
#   the bit stream is sent via SPI to avoid MCU bit banging and its
#   inaccurate timing (when interrupts are used in the firmware)
# - RGBW datasheet (Adafruit copy) for SK6812
#   https://cdn-shop.adafruit.com/product-files/2757/p2757_SK6812RGBW_REV01.pdf
#   also 1.2us total, shared across 0.3/0.9 for 0, 0.6/0.6 for 1,
#   80us reset pulse, R8/G8/B8/W8 format per 32bits
# - WS2815, RGB LED, uses GRB wire format, 280us RESET pulse width
# - more vendors and models available and in popular use,
#   suggests "one third" or "two thirds" ratio would be most robust,
#   sample "a little before" the bit half? reset pulse width may need
#   to become an option? matrices and/or fast refresh environments
#   may want to experiment with back to back pixel streams

import sigrokdecode as srd
from common.srdhelper import bitpack_msb

class SamplerateError(Exception):
    pass

class DecoderError(Exception):
    pass

(
    ANN_BIT, ANN_RESET, ANN_RGB,
    ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,
) = range(7)

class Decoder(srd.Decoder):
    api_version = 3
    id = 'rgb_led_ws281x'
    name = 'RGB LED (WS281x)'
    longname = 'RGB LED string decoder (WS281x)'
    desc = 'RGB LED string protocol (WS281x).'
    license = 'gplv3+'
    inputs = ['logic']
    outputs = []
    tags = ['Display', 'IC']
    channels = (
        {'id': 'din', 'name': 'DIN', 'desc': 'DIN data line'},
    )
    annotations = (
        ('bit', 'Bit'),
        ('reset', 'RESET'),
        ('rgb', 'RGB'),
        ('r', 'R'),
        ('g', 'G'),
        ('b', 'B'),
        ('w', 'W'),
    )
    annotation_rows = (
        ('bits', 'Bits', (ANN_BIT, ANN_RESET,)),
        ('rgb-comps', 'RGB components', (ANN_COMP_R, ANN_COMP_G, ANN_COMP_B, ANN_COMP_W,)),
        ('rgb-vals', 'RGB values', (ANN_RGB,)),
    )
    options = (
        {'id': 'wireorder', 'desc': 'colour components order (wire)',
         'default': 'GRB',
         'values': ('BGR', 'BRG', 'GBR', 'GRB', 'RBG', 'RGB', 'RWBG', 'RGBW')},
        {'id': 'textorder', 'desc': 'components output order (text)',
         'default': 'RGB', 'values': ('wire', 'RGB[W]', 'RGB', 'RGBW', 'RGWB')},
    )

    def __init__(self):
        self.reset()

    def reset(self):
        self.samplerate = None
        self.bits = []

    def start(self):
        self.out_ann = self.register(srd.OUTPUT_ANN)

    def metadata(self, key, value):
        if key == srd.SRD_CONF_SAMPLERATE:
            self.samplerate = value

    def putg(self, ss, es, cls, text):
        self.put(ss, es, self.out_ann, [cls, text])

    def handle_bits(self):
        if len(self.bits) < self.need_bits:
            return
        ss_packet, es_packet = self.bits[0][1], self.bits[-1][2]
        r, g, b, w = 0, 0, 0, None
        comps = []
        for i, c in enumerate(self.wireformat):
            first_idx, after_idx = 8 * i, 8 * i + 8
            comp_bits = self.bits[first_idx:after_idx]
            comp_ss, comp_es = comp_bits[0][1], comp_bits[-1][2]
            comp_value = bitpack_msb(comp_bits, 0)
            comp_text = '{:02x}'.format(comp_value)
            comp_ann = {
                    'r': ANN_COMP_R, 'g': ANN_COMP_G,
                    'b': ANN_COMP_B, 'w': ANN_COMP_W,
            }.get(c.lower(), None)
            comp_item = (comp_ss, comp_es, comp_ann, comp_value, comp_text)
            comps.append(comp_item)
            if c.lower() == 'r':
                r = comp_value
            elif c.lower() == 'g':
                g = comp_value
            elif c.lower() == 'b':
                b = comp_value
            elif c.lower() == 'w':
                w = comp_value
        wt = '' if w is None else '{:02x}'.format(w)
        if self.textformat == 'wire':
            rgb_text = '#' + ''.join([c[-1] for c in comps])
        else:
            rgb_text = self.textformat.format(r = r, g = g, b = b, w = w, wt = wt)
        for ss_comp, es_comp, cls_comp, value_comp, text_comp in comps:
            self.putg(ss_comp, es_comp, cls_comp, [text_comp])
        if rgb_text:
            self.putg(ss_packet, es_packet, ANN_RGB, [rgb_text])
        self.bits.clear()

    def handle_bit(self, ss, es, value, ann_late = False):
        if not ann_late:
            text = ['{:d}'.format(value)]
            self.putg(ss, es, ANN_BIT, text)
        item = (value, ss, es)
        self.bits.append(item)
        self.handle_bits()
        if ann_late:
            text = ['{:d}'.format(value)]
            self.putg(ss, es, ANN_BIT, text)

    def decode(self):
        if not self.samplerate:
            raise SamplerateError('Cannot decode without samplerate.')

        # Preprocess options here, to simplify logic which executes
        # much later in loops while settings have the same values.
        wireorder = self.options['wireorder'].lower()
        self.wireformat = [c for c in wireorder if c in 'rgbw']
        self.need_bits = len(self.wireformat) * 8
        textorder = self.options['textorder'].lower()
        if textorder == 'wire':
            self.textformat = 'wire'
        elif textorder == 'rgb[w]':
            self.textformat = '#{r:02x}{g:02x}{b:02x}{wt:s}'
        else:
            self.textformat = {
                # "Obvious" permutations of R/G/B.
                'bgr': '#{b:02x}{g:02x}{r:02x}',
                'brg': '#{b:02x}{r:02x}{g:02x}',
                'gbr': '#{g:02x}{b:02x}{r:02x}',
                'grb': '#{g:02x}{r:02x}{b:02x}',
                'rbg': '#{r:02x}{b:02x}{g:02x}',
                'rgb': '#{r:02x}{g:02x}{b:02x}',
                # RGB plus White. Only one of them useful?
                'rgbw': '#{r:02x}{g:02x}{b:02x}{w:02x}',
                # Weird RGBW permutation for compatibility to test case.
                # Neither used RGBW nor the 'wire' order. Obsolete now?
                'rgwb': '#{r:02x}{g:02x}{w:02x}{b:02x}',
            }.get(textorder, None)
            if self.textformat is None:
                raise DecoderError('Unsupported text output format.')

        # Either check for edges which communicate bit values, or for
        # long periods of idle level which represent a reset pulse.
        # Track the left-most, right-most, and inner edge positions of
        # a bit. The positive period's width determines the bit's value.
        # Initially synchronize to the input stream by searching for a
        # low period, which preceeds a data bit or starts a reset pulse.
        # Don't annotate the very first reset pulse, but process it. We
        # may not see the right-most edge of a data bit when reset is
        # adjacent to that bit time.
        cond_bit_starts = {0: 'r'}
        cond_inbit_edge = {0: 'f'}
        samples_625ns = int(self.samplerate * 625e-9)
        samples_50us = round(self.samplerate * 50e-6)
        cond_reset_pulse = {'skip': samples_50us + 1}
        conds = [cond_bit_starts, cond_inbit_edge, cond_reset_pulse]
        ss_bit, inv_bit, es_bit = None, None, None
        pin, = self.wait({0: 'l'})
        inv_bit = self.samplenum
        check_reset = False
        while True:
            pin, = self.wait(conds)

            # Check RESET condition. Manufacturers may disagree on the
            # minimal pulse width. 50us are recommended in datasheets,
            # experiments suggest the limit is around 10us.
            # When the RESET pulse is adjacent to the low phase of the
            # last bit time, we have no appropriate condition for the
            # bit time's end location. That's why this BIT's annotation
            # is shorter (only spans the high phase), and the RESET
            # annotation immediately follows (spans from the falling edge
            # to the end of the minimum RESET pulse width).
            if check_reset and self.matched[2]:
                es_bit = inv_bit
                ss_rst, es_rst = inv_bit, self.samplenum

                if ss_bit and inv_bit and es_bit:
                    # Decode last bit value. Use the last processed bit's
                    # width for comparison when available. Fallback to an
                    # arbitrary threshold otherwise (which can result in
                    # false detection of value 1 for those captures where
                    # high and low pulses are of similar width).
                    duty = inv_bit - ss_bit
                    thres = samples_625ns
                    if self.bits:
                        period = self.bits[-1][2] - self.bits[-1][1]
                        thres = period * 0.5
                    bit_value = 1 if duty >= thres else 0
                    self.handle_bit(ss_bit, inv_bit, bit_value, True)

                if ss_rst and es_rst:
                    text = ['RESET', 'RST', 'R']
                    self.putg(ss_rst, es_rst, ANN_RESET, text)
                check_reset = False

                self.bits.clear()
                ss_bit, inv_bit, es_bit = None, None, None

            # Rising edge starts a bit time. Falling edge ends its high
            # period. Get the previous bit's duty cycle and thus its
            # bit value when the next bit starts.
            if self.matched[0]: # and pin:
                check_reset = False
                if ss_bit and inv_bit:
                    # Got a previous bit? Handle it.
                    es_bit = self.samplenum
                    period = es_bit - ss_bit
                    duty = inv_bit - ss_bit
                    # Ideal duty for T0H: 33%, T1H: 66%.
                    bit_value = 1 if (duty / period) > 0.5 else 0
                    self.handle_bit(ss_bit, es_bit, bit_value)
                ss_bit, inv_bit, es_bit = self.samplenum, None, None
            if self.matched[1]: # and not pin:
                check_reset = True
                inv_bit = self.samplenum