summaryrefslogtreecommitdiff
path: root/decoders/rc_encode/pd.py
blob: 31727bdb1aac4abd6d985e2b5a4ff50cbc1c641e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Steve R <steversig@virginmedia.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

import sigrokdecode as srd

bitvals = ('0', '1', 'f', 'U')

def decode_bit(edges, pulses_per_bit):
    if pulses_per_bit == 2:
        # Datasheet says long pulse is 3 times short pulse.
        lmin = 1.5 # long min multiplier
        lmax = 5 # long max multiplier
        if (edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax): # 0 -___
            return '0'
        elif (edges[0] >= edges[1] * lmin and edges[0] <= edges[1] * lmax): # 1 ---_
             return '1'
        # No float type for this line encoding
        else:
            return 'U'

    if pulses_per_bit == 4:
        # Datasheet says long pulse is 3 times short pulse.
        lmin = 2 # long min multiplier
        lmax = 5 # long max multiplier
        eqmin = 0.5 # equal min multiplier
        eqmax = 1.5 # equal max multiplier
        if ( # 0 -___-___
            (edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
            (edges[2] >= edges[0] * eqmin and edges[2] <= edges[0] * eqmax) and
            (edges[3] >= edges[0] * lmin and edges[3] <= edges[0] * lmax)):
            return '0'
        elif ( # 1 ---_---_
            (edges[0] >= edges[1] * lmin and edges[0] <= edges[1] * lmax) and
            (edges[0] >= edges[2] * eqmin and edges[0] <= edges[2] * eqmax) and
            (edges[0] >= edges[3] * lmin and edges[0] <= edges[3] * lmax)):
             return '1'
        elif ( # float ---_-___
             (edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
            (edges[2] >= edges[0] * lmin and edges[2] <= edges[0]* lmax) and
            (edges[3] >= edges[0] * eqmin and edges[3] <= edges[0] * eqmax)):
            return 'f'
        else:
            return 'U'

def pinlabels(bit_count, packet_bit_count):
    if packet_bit_count == 12:
        if bit_count <= 6:
            return 'A%i' % (bit_count - 1)
        else:
            return 'A%i/D%i' % (bit_count - 1, 12 - bit_count)

    if packet_bit_count == 24:
        if bit_count <= 20:
            return 'A%i' % (bit_count - 1)
        else:
            return 'D%i' % (bit_count - 21)

def decode_model(model, bits):
    if model == 'maplin_l95ar':
        address = 'Addr' # Address bits A0 to A5
        for i in range(0, 6):
            address += ' %i:' % (i + 1) + ('on' if bits[i][0] == '0' else 'off')
        button = 'Button'
        # Button bits A6/D5 to A11/D0
        if bits[6][0] == '0' and bits[11][0] == '0':
            button += ' A ON/OFF'
        elif bits[7][0] == '0' and bits[11][0] == '0':
            button += ' B ON/OFF'
        elif bits[9][0] == '0' and bits[11][0] == '0':
            button += ' C ON/OFF'
        elif bits[8][0] == '0' and bits[11][0] == '0':
            button += ' D ON/OFF'
        else:
            button += ' Unknown'
        return [address, bits[0][1], bits[5][2], \
                button, bits[6][1], bits[11][2]]

    if model == 'xx1527':
        addr = 0
        addr_valid = 1
        for i in range(0, 20):
            if bits[i][0] != 'U':
                addr += int(bits[i][0]) * 2 ** i
            else:
                addr_valid = 0

        if addr_valid == 1:
            address = 'Address 0x%X %X %X' % (addr & 0xFF, (addr >> 8) & 0xFF, addr >> 16)
        else:
            address = 'Invalid address as not all bits are 0 or 1'

        output  = ' K0 = ' + bits[20][0] + ','
        output += ' K1 = ' + bits[21][0] + ','
        output += ' K2 = ' + bits[22][0] + ','
        output += ' K3 = ' + bits[23][0]
        return [address, bits[0][1], bits[19][2], \
                output, bits[20][1], bits[23][2]]

class Decoder(srd.Decoder):
    api_version = 3
    id = 'rc_encode'
    name = 'RC encode'
    longname = 'Remote control encoder'
    desc = 'PT22x2/HX22x2/SC52x2 and xx1527 remote control encoder protocol.'
    license = 'gplv2+'
    inputs = ['logic']
    outputs = []
    tags = ['IC', 'IR']
    channels = (
        {'id': 'data', 'name': 'Data', 'desc': 'Data line'},
    )
    annotations = (
        ('bit-0', 'Bit 0'),
        ('bit-1', 'Bit 1'),
        ('bit-f', 'Bit f'),
        ('bit-U', 'Bit U'),
        ('bit-sync', 'Bit sync'),
        ('pin', 'Pin'),
        ('code-word-addr', 'Code word address'),
        ('code-word-data', 'Code word data'),
    )
    annotation_rows = (
        ('bits', 'Bits', (0, 1, 2, 3, 4)),
        ('pins', 'Pins', (5,)),
        ('code-words', 'Code words', (6, 7)),
    )
    options = (
        {'id': 'linecoding', 'desc': 'Encoding', 'default': 'SC52x2/HX22x2', 'values': ('SC52x2/HX22x2', 'xx1527')},
        {'id': 'remote', 'desc': 'Remote', 'default': 'none', 'values': ('none', 'maplin_l95ar')},
    )

    def __init__(self):
        self.reset()

    def reset(self):
        self.samplenumber_last = None
        self.pulses = []
        self.bits = []
        self.labels = []
        self.bit_count = 0
        self.ss = None
        self.es = None
        self.state = 'IDLE'

    def start(self):
        self.out_ann = self.register(srd.OUTPUT_ANN)
        self.model = self.options['remote']
        if self.options['linecoding'] == 'xx1527':
            self.pulses_per_bit = 2
            self.packet_bits = 24
            self.model = 'xx1527'
        else:
            self.pulses_per_bit = 4 # Each bit is repeated
            self.packet_bits = 12

    def putx(self, data):
        self.put(self.ss, self.es, self.out_ann, data)

    def decode(self):
        while True:
            pin = self.wait({0: 'e'})
            self.state = 'DECODING'

            if not self.samplenumber_last: # Set counters to start of signal.
                self.samplenumber_last = self.samplenum
                self.ss = self.samplenum
                continue

            if self.bit_count < self.packet_bits: # Decode A0 to A11 / A23.
                self.bit_count += 1
                for i in range(0, self.pulses_per_bit):
                    if i > 0:
                        pin = self.wait({0: 'e'}) # Get next edges if we need more.
                    samples = self.samplenum - self.samplenumber_last
                    self.pulses.append(samples) # Save the pulse width.
                    self.samplenumber_last = self.samplenum
                self.es = self.samplenum
                self.bits.append([decode_bit(self.pulses, self.pulses_per_bit), self.ss,
                                  self.es]) # Save states and times.
                idx = bitvals.index(decode_bit(self.pulses, self.pulses_per_bit))
                self.putx([idx, [decode_bit(self.pulses, self.pulses_per_bit)]]) # Write decoded bit.
                self.putx([5, [pinlabels(self.bit_count, self.packet_bits)]]) # Write pin labels.
                self.pulses = []
                self.ss = self.samplenum
            else:
                if self.model != 'none':
                    self.labels = decode_model(self.model, self.bits)
                    self.put(self.labels[1], self.labels[2], self.out_ann,
                             [6, [self.labels[0]]]) # Write model decode.
                    self.put(self.labels[4], self.labels[5], self.out_ann,
                             [7, [self.labels[3]]]) # Write model decode.
                samples = self.samplenum - self.samplenumber_last
                pin = self.wait({'skip': 8 * samples}) # Wait for end of sync bit.
                self.es = self.samplenum
                self.putx([4, ['Sync']]) # Write sync label.
                self.reset() # Reset and wait for next set of pulses.
                self.state = 'DECODE_TIMEOUT'
            if not self.state == 'DECODE_TIMEOUT':
                self.samplenumber_last = self.samplenum