1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Steve R <steversig@virginmedia.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
bitvals = ('0', '1', 'f', 'U')
def decode_bit(edges):
# Datasheet says long pulse is 3 times short pulse.
lmin = 2 # long min multiplier
lmax = 5 # long max multiplier
eqmin = 0.5 # equal min multiplier
eqmax = 1.5 # equal max multiplier
if ( # 0 -___-___
(edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
(edges[2] >= edges[0] * eqmin and edges[2] <= edges[0] * eqmax) and
(edges[3] >= edges[0] * lmin and edges[3] <= edges[0] * lmax)):
return '0'
elif ( # 1 ---_---_
(edges[0] >= edges[1] * lmin and edges[0] <= edges[1] * lmax) and
(edges[0] >= edges[2] * eqmin and edges[0] <= edges[2] * eqmax) and
(edges[0] >= edges[3] * lmin and edges[0] <= edges[3] * lmax)):
return '1'
elif ( # float ---_-___
(edges[1] >= edges[0] * lmin and edges[1] <= edges[0] * lmax) and
(edges[2] >= edges[0] * lmin and edges[2] <= edges[0]* lmax) and
(edges[3] >= edges[0] * eqmin and edges[3] <= edges[0] * eqmax)):
return 'f'
else:
return 'U'
def pinlabels(bit_count):
if bit_count <= 6:
return 'A%i' % (bit_count - 1)
else:
return 'A%i/D%i' % (bit_count - 1, 12 - bit_count)
def decode_model(model, bits):
if model == 'maplin_l95ar':
address = 'Addr' # Address pins A0 to A5
for i in range(0, 6):
address += ' %i:' % (i + 1) + ('on' if bits[i][0] == '0' else 'off')
button = 'Button'
# Button pins A6/D5 to A11/D0
if bits[6][0] == '0' and bits[11][0] == '0':
button += ' A ON/OFF'
elif bits[7][0] == '0' and bits[11][0] == '0':
button += ' B ON/OFF'
elif bits[9][0] == '0' and bits[11][0] == '0':
button += ' C ON/OFF'
elif bits[8][0] == '0' and bits[11][0] == '0':
button += ' D ON/OFF'
else:
button += ' Unknown'
return ['%s' % address, bits[0][1], bits[5][2], \
'%s' % button, bits[6][1], bits[11][2]]
class Decoder(srd.Decoder):
api_version = 3
id = 'rc_encode'
name = 'RC encode'
longname = 'Remote control encoder'
desc = 'PT2262/HX2262/SC5262 remote control encoder protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
annotations = (
('bit-0', 'Bit 0'),
('bit-1', 'Bit 1'),
('bit-f', 'Bit f'),
('bit-U', 'Bit U'),
('bit-sync', 'Bit sync'),
('pin', 'Pin'),
('code-word-addr', 'Code word address'),
('code-word-data', 'Code word data'),
)
annotation_rows = (
('bits', 'Bits', (0, 1, 2, 3, 4)),
('pins', 'Pins', (5,)),
('code-words', 'Code words', (6, 7)),
)
options = (
{'id': 'remote', 'desc': 'Remote', 'default': 'none',
'values': ('none', 'maplin_l95ar')},
)
def __init__(self):
self.reset()
def reset(self):
self.samplenumber_last = None
self.pulses = []
self.bits = []
self.labels = []
self.bit_count = 0
self.ss = None
self.es = None
self.state = 'IDLE'
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.model = self.options['remote']
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def decode(self):
while True:
pin = self.wait({0: 'e'})
self.state = 'DECODING'
if not self.samplenumber_last: # Set counters to start of signal.
self.samplenumber_last = self.samplenum
self.ss = self.samplenum
continue
if self.bit_count < 12: # Decode A0 to A11.
self.bit_count += 1
for i in range(0, 4): # Get four pulses for each bit.
if i > 0:
pin = self.wait({0: 'e'}) # Get next 3 edges.
samples = self.samplenum - self.samplenumber_last
self.pulses.append(samples) # Save the pulse width.
self.samplenumber_last = self.samplenum
self.es = self.samplenum
self.bits.append([decode_bit(self.pulses), self.ss,
self.es]) # Save states and times.
idx = bitvals.index(decode_bit(self.pulses))
self.putx([idx, [decode_bit(self.pulses)]]) # Write decoded bit.
self.putx([5, [pinlabels(self.bit_count)]]) # Write pin labels.
self.pulses = []
self.ss = self.samplenum
else:
if self.model != 'none':
self.labels = decode_model(self.model, self.bits)
self.put(self.labels[1], self.labels[2], self.out_ann,
[6, [self.labels[0]]]) # Write model decode.
self.put(self.labels[4], self.labels[5], self.out_ann,
[7, [self.labels[3]]]) # Write model decode.
samples = self.samplenum - self.samplenumber_last
pin = self.wait({'skip': 8 * samples}) # Wait for end of sync bit.
self.es = self.samplenum
self.putx([4, ['Sync']]) # Write sync label.
self.reset() # Reset and wait for next set of pulses.
self.state = 'DECODE_TIMEOUT'
if not self.state == 'DECODE_TIMEOUT':
self.samplenumber_last = self.samplenum
|