1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Torsten Duwe <duwe@suse.de>
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 2
id = 'pwm'
name = 'PWM'
longname = 'Pulse-width modulation'
desc = 'Analog level encoded in duty cycle percentage.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['pwm']
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
'values': ('active-low', 'active-high')},
)
annotations = (
('duty-cycle', 'Duty cycle'),
('period', 'Period'),
)
annotation_rows = (
('duty-cycle', 'Duty cycle', (0,)),
('period', 'Period', (1,)),
)
binary = (
('raw', 'RAW file'),
)
def __init__(self, **kwargs):
self.ss_block = self.es_block = None
self.first_transition = True
self.first_samplenum = None
self.start_samplenum = None
self.end_samplenum = None
self.oldpin = None
self.num_cycles = 0
self.average = 0
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def start(self):
self.startedge = 0 if self.options['polarity'] == 'active-low' else 1
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_average = \
self.register(srd.OUTPUT_META,
meta=(float, 'Average', 'PWM base (cycle) frequency'))
def putx(self, data):
self.put(self.ss_block, self.es_block, self.out_ann, data)
def putp(self, period_t):
# Adjust granularity.
if period_t == 0 or period_t >= 1:
period_s = '%.1f s' % (period_t)
elif period_t <= 1e-12:
period_s = '%.1f fs' % (period_t * 1e15)
elif period_t <= 1e-9:
period_s = '%.1f ps' % (period_t * 1e12)
elif period_t <= 1e-6:
period_s = '%.1f ns' % (period_t * 1e9)
elif period_t <= 1e-3:
period_s = '%.1f μs' % (period_t * 1e6)
else:
period_s = '%.1f ms' % (period_t * 1e3)
self.put(self.ss_block, self.es_block, self.out_ann, [1, [period_s]])
def putb(self, data):
self.put(self.num_cycles, self.num_cycles, self.out_binary, data)
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
# Ignore identical samples early on (for performance reasons).
if self.oldpin == pins[0]:
continue
# Initialize self.oldpins with the first sample value.
if self.oldpin is None:
self.oldpin = pins[0]
continue
if self.first_transition:
# First rising edge
if self.oldpin != self.startedge:
self.first_samplenum = self.samplenum
self.start_samplenum = self.samplenum
self.first_transition = False
else:
if self.oldpin != self.startedge:
# Rising edge
# We are on a full cycle we can calculate
# the period, the duty cycle and its ratio.
period = self.samplenum - self.start_samplenum
duty = self.end_samplenum - self.start_samplenum
ratio = float(duty / period)
# This interval starts at this edge.
self.ss_block = self.start_samplenum
# Store the new rising edge position and the ending
# edge interval.
self.start_samplenum = self.es_block = self.samplenum
# Report the duty cycle in percent.
percent = float(ratio * 100)
self.putx([0, ['%f%%' % percent]])
# Report the duty cycle in the binary output.
self.putb([0, bytes([int(ratio * 256)])])
# Report the period in units of time.
period_t = float(period / self.samplerate)
self.putp(period_t)
# Update and report the new duty cycle average.
self.num_cycles += 1
self.average += percent
self.put(self.first_samplenum, self.es_block, self.out_average,
float(self.average / self.num_cycles))
else:
# Falling edge
self.end_samplenum = self.ss_block = self.samplenum
self.oldpin = pins[0]
|