1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Torsten Duwe <duwe@suse.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 2
id = 'pwm'
name = 'PWM'
longname = 'Pulse-width modulation'
desc = 'Analog level encoded in duty cycle percentage.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['pwm']
channels = (
{'id': 'pwm', 'name': 'PWM in', 'desc': 'Modulation pulses'},
)
options = (
{'id': 'new_cycle_edge', 'desc': 'New cycle on which edge',
'default': 'rising', 'values': ('rising', 'falling')},
)
annotations = (
('value', 'PWM value'),
)
binary = (
('raw', 'RAW file'),
)
def __init__(self, **kwargs):
self.ss = self.es = -1
self.high = 1
self.low = 1
self.lastedge = 0
self.oldpin = 0
self.startedge = 0
self.num_cycles = 0
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_bin = self.register(srd.OUTPUT_BINARY)
self.out_freq = self.register(srd.OUTPUT_META,
meta=(int, 'Frequency', 'PWM base (cycle) frequency'))
self.startedge = 0
if self.options['new_cycle_edge'] == 'falling':
self.startedge = 1
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putp(self, data):
self.put(self.ss, self.es, self.out_python, data)
def putb(self, data):
self.put(self.num_cycles, self.num_cycles, self.out_bin, data)
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
# Ignore identical samples early on (for performance reasons).
if self.oldpin == pins[0]:
continue
if self.oldpin == 0: # Rising edge.
self.low = self.samplenum - self.lastedge
else:
self.high = self.samplenum - self.lastedge
if self.oldpin == self.startedge:
self.es = self.samplenum # This interval ends at this edge.
if self.ss >= 0: # Have we completed a hi-lo sequence?
self.putx([0, ["%d%%" % ((100 * self.high) // (self.high + self.low))]])
self.putb((0, bytes([(256 * self.high) // (self.high + self.low)])))
self.num_cycles += 1
else:
# Mid-interval.
# This interval started at the previous edge.
self.ss = self.lastedge
self.lastedge = self.samplenum
self.oldpin = pins[0]
|