1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2016 Daniel Schulte <trilader@schroedingers-bit.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from collections import namedtuple
class Ann:
BIT, START, STOP, PARITY_OK, PARITY_ERR, DATA, WORD = range(7)
Bit = namedtuple('Bit', 'val ss es')
class Decoder(srd.Decoder):
api_version = 2
id = 'ps2'
name = 'PS/2'
longname = 'PS/2'
desc = 'PS/2 keyboard/mouse interface.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['ps2']
channels = (
{'id': 'clk', 'name': 'Clock', 'desc': 'Clock line'},
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
annotations = (
('bit', 'Bit'),
('start-bit', 'Start bit'),
('stop-bit', 'Stop bit'),
('parity-ok', 'Parity OK bit'),
('parity-err', 'Parity error bit'),
('data-bit', 'Data bit'),
('word', 'Word'),
)
annotation_rows = (
('bits', 'Bits', (0,)),
('fields', 'Fields', (1, 2, 3, 4, 5, 6)),
)
def __init__(self):
self.bits = []
self.prev_pins = None
self.prev_clock = None
self.samplenum = 0
self.clock_was_high = False
self.bitcount = 0
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putb(self, bit, ann_idx):
b = self.bits[bit]
self.put(b.ss, b.es, self.out_ann, [ann_idx, [str(b.val)]])
def putx(self, bit, ann):
self.put(self.bits[bit].ss, self.bits[bit].es, self.out_ann, ann)
def handle_bits(self, datapin):
# Ignore non start condition bits (useful during keyboard init).
if self.bitcount == 0 and datapin == 1:
return
# Store individual bits and their start/end samplenumbers.
self.bits.append(Bit(datapin, self.samplenum, self.samplenum))
# Fix up end sample numbers of the bits.
if self.bitcount > 0:
b = self.bits[self.bitcount - 1]
self.bits[self.bitcount - 1] = Bit(b.val, b.ss, self.samplenum)
if self.bitcount == 11:
self.bitwidth = self.bits[1].es - self.bits[2].es
b = self.bits[-1]
self.bits[-1] = Bit(b.val, b.ss, b.es + self.bitwidth)
# Find all 11 bits. Start + 8 data + odd parity + stop.
if self.bitcount < 11:
self.bitcount += 1
return
# Extract data word.
word = 0
for i in range(8):
word |= (self.bits[i + 1].val << i)
# Calculate parity.
parity_ok = (bin(word).count('1') + self.bits[9].val) % 2 == 1
# Emit annotations.
for i in range(11):
self.putb(i, Ann.BIT)
self.putx(0, [Ann.START, ['Start bit', 'Start', 'S']])
self.put(self.bits[1].ss, self.bits[8].es, self.out_ann, [Ann.WORD,
['Data: %02x' % word, 'D: %02x' % word, '%02x' % word]])
if parity_ok:
self.putx(9, [Ann.PARITY_OK, ['Parity OK', 'Par OK', 'P']])
else:
self.putx(9, [Ann.PARITY_ERR, ['Parity error', 'Par err', 'PE']])
self.putx(10, [Ann.STOP, ['Stop bit', 'Stop', 'St', 'T']])
self.bits, self.bitcount = [], 0
def find_clk_edge(self, clock_pin, data_pin):
# Ignore sample if the clock pin hasn't changed.
if clock_pin == self.prev_clock:
return
self.prev_clock = clock_pin
# Sample on falling clock edge.
if clock_pin == 1:
return
# Found the correct clock edge, now get the bits.
self.handle_bits(data_pin)
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
clock_pin, data_pin = pins[0], pins[1]
# Ignore identical samples.
if self.prev_pins == pins:
continue
self.prev_pins = pins
if clock_pin == 0 and not self.clock_was_high:
continue
self.clock_was_high = True
self.find_clk_edge(clock_pin, data_pin)
|