1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2013-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>, <pdata>
- 'ITEM', [<item>, <itembitsize>]
- 'WORD', [<word>, <wordbitsize>, <worditemcount>]
<item>:
- A single item (a number). It can be of arbitrary size. The max. number
of bits in this item is specified in <itembitsize>.
<itembitsize>:
- The size of an item (in bits). For a 4-bit parallel bus this is 4,
for a 16-bit parallel bus this is 16, and so on.
<word>:
- A single word (a number). It can be of arbitrary size. The max. number
of bits in this word is specified in <wordbitsize>. The (exact) number
of items in this word is specified in <worditemcount>.
<wordbitsize>:
- The size of a word (in bits). For a 2-item word with 8-bit items
<wordbitsize> is 16, for a 3-item word with 4-bit items <wordbitsize>
is 12, and so on.
<worditemcount>:
- The size of a word (in number of items). For a 4-item word (no matter
how many bits each item consists of) <worditemcount> is 4, for a 7-item
word <worditemcount> is 7, and so on.
'''
NUM_CHANNELS = 8
class Pin:
CLOCK = 0
DATA_0 = CLOCK + 1
DATA_N = DATA_0 + NUM_CHANNELS
class Ann:
ITEM, WORD = range(2)
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'parallel'
name = 'Parallel'
longname = 'Parallel sync bus'
desc = 'Generic parallel synchronous bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['parallel']
tags = ['Util']
optional_channels = tuple(
[{'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}] +
[
{'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i}
for i in range(NUM_CHANNELS)
]
)
options = (
{'id': 'clock_edge', 'desc': 'Clock edge to sample on',
'default': 'rising', 'values': ('rising', 'falling')},
{'id': 'wordsize', 'desc': 'Data wordsize (# bus cycles)',
'default': 0},
{'id': 'endianness', 'desc': 'Data endianness',
'default': 'little', 'values': ('little', 'big')},
)
annotations = (
('item', 'Item'),
('word', 'Word'),
)
annotation_rows = (
('items', 'Items', (Ann.ITEM,)),
('words', 'Words', (Ann.WORD,)),
)
def __init__(self):
self.reset()
def reset(self):
self.items = []
self.saved_item = None
self.ss_item = self.es_item = None
self.saved_word = None
self.ss_word = self.es_word = None
self.first = True
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
def putpb(self, data):
self.put(self.ss_item, self.es_item, self.out_python, data)
def putb(self, data):
self.put(self.ss_item, self.es_item, self.out_ann, data)
def putpw(self, data):
self.put(self.ss_word, self.es_word, self.out_python, data)
def putw(self, data):
self.put(self.ss_word, self.es_word, self.out_ann, data)
def handle_bits(self, item, used_pins):
# If a word was previously accumulated, then emit its annotation
# now after its end samplenumber became available.
if self.saved_word is not None:
if self.options['wordsize'] > 0:
self.es_word = self.samplenum
self.putw([Ann.WORD, [self.fmt_word.format(self.saved_word)]])
self.putpw(['WORD', self.saved_word])
self.saved_word = None
# Defer annotations for individual items until the next sample
# is taken, and the previous sample's end samplenumber has
# become available.
if self.first:
# Save the start sample and item for later (no output yet).
self.ss_item = self.samplenum
self.first = False
self.saved_item = item
else:
# Output the saved item (from the last CLK edge to the current).
self.es_item = self.samplenum
self.putpb(['ITEM', self.saved_item])
self.putb([Ann.ITEM, [self.fmt_item.format(self.saved_item)]])
self.ss_item = self.samplenum
self.saved_item = item
# Get as many items as the configured wordsize specifies.
if not self.items:
self.ss_word = self.samplenum
self.items.append(item)
ws = self.options['wordsize']
if len(self.items) < ws:
return
# Collect words and prepare annotation details, but defer emission
# until the end samplenumber becomes available.
endian = self.options['endianness']
if endian == 'big':
self.items.reverse()
word = sum([self.items[i] << (i * used_pins) for i in range(ws)])
self.saved_word = word
self.items = []
def decode(self):
# Determine which (optional) channels have input data. Insist in
# a non-empty input data set. Cope with sparse connection maps.
# Store enough state to later "compress" sampled input data.
data_indices = [
idx if self.has_channel(idx) else None
for idx in range(Pin.DATA_0, Pin.DATA_N)
]
has_data = [idx for idx in data_indices if idx is not None]
if not has_data:
raise ChannelError('Need at least one data channel.')
max_connected = max(has_data)
# Pre-determine which input data to strip off, the width of
# individual items and multiplexed words, as well as format
# strings here. This simplifies call sites which run in tight
# loops later.
upper_data_bound = max_connected + 1
num_item_bits = upper_data_bound - Pin.DATA_0
num_word_items = self.options['wordsize']
num_word_bits = num_item_bits * num_word_items
num_digits = (num_item_bits + 4 - 1) // 4
self.fmt_item = "{{:0{}x}}".format(num_digits)
num_digits = (num_word_bits + 4 - 1) // 4
self.fmt_word = "{{:0{}x}}".format(num_digits)
# Determine .wait() conditions, depending on the presence of a
# clock signal. Either inspect samples on the configured edge of
# the clock, or inspect samples upon ANY edge of ANY of the pins
# which provide input data.
has_clock = self.has_channel(Pin.CLOCK)
if has_clock:
edge = self.options['clock_edge'][0]
conds = [{Pin.CLOCK: edge}]
else:
conds = [{idx: 'e'} for idx in has_data]
# Keep processing the input stream. Assume "always zero" for
# not-connected input lines. Pass data bits (all inputs except
# clock) to the handle_bits() method.
while True:
pins = self.wait(conds)
data_bits = [0 if idx is None else pins[idx] for idx in data_indices]
data_bits = data_bits[:num_item_bits]
item = bitpack(data_bits)
self.handle_bits(item, num_item_bits)
|