1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2013-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from common.srdhelper import bitpack
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>, <pdata>
- 'ITEM', [<item>, <itembitsize>]
- 'WORD', [<word>, <wordbitsize>, <worditemcount>]
<item>:
- A single item (a number). It can be of arbitrary size. The max. number
of bits in this item is specified in <itembitsize>.
<itembitsize>:
- The size of an item (in bits). For a 4-bit parallel bus this is 4,
for a 16-bit parallel bus this is 16, and so on.
<word>:
- A single word (a number). It can be of arbitrary size. The max. number
of bits in this word is specified in <wordbitsize>. The (exact) number
of items in this word is specified in <worditemcount>.
<wordbitsize>:
- The size of a word (in bits). For a 2-item word with 8-bit items
<wordbitsize> is 16, for a 3-item word with 4-bit items <wordbitsize>
is 12, and so on.
<worditemcount>:
- The size of a word (in number of items). For a 4-item word (no matter
how many bits each item consists of) <worditemcount> is 4, for a 7-item
word <worditemcount> is 7, and so on.
'''
NUM_CHANNELS = 16
class Pin:
CLOCK = 0
DATA_0 = CLOCK + 1
DATA_N = DATA_0 + NUM_CHANNELS
# BEWARE! DATA_N points _beyond_ the data partition (Python range(3)
# semantics, useful to have to simplify other code locations).
RESET = DATA_N
class Ann:
ITEM, WORD, WARN = range(3)
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'parallel'
name = 'Parallel'
longname = 'Parallel sync bus'
desc = 'Generic parallel synchronous bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['parallel']
tags = ['Util']
optional_channels = tuple(
[{'id': 'clk', 'name': 'CLK', 'desc': 'Clock line'}] +
[
{'id': 'd%d' % i, 'name': 'D%d' % i, 'desc': 'Data line %d' % i}
for i in range(NUM_CHANNELS)
] +
[{'id': 'rst', 'name': 'RST', 'desc': 'RESET line'}]
)
options = (
{'id': 'clock_edge', 'desc': 'Clock edge to sample on',
'default': 'rising', 'values': ('rising', 'falling', 'either')},
{'id': 'reset_polarity', 'desc': 'Reset line polarity',
'default': 'low-active', 'values': ('low-active', 'high-active')},
{'id': 'wordsize', 'desc': 'Data wordsize (# bus cycles)',
'default': 0},
{'id': 'endianness', 'desc': 'Data endianness',
'default': 'little', 'values': ('little', 'big')},
)
annotations = (
('item', 'Item'),
('word', 'Word'),
('warning', 'Warning'),
)
annotation_rows = (
('items', 'Items', (Ann.ITEM,)),
('words', 'Words', (Ann.WORD,)),
('warnings', 'Warnings', (Ann.WARN,)),
)
binary = (
('binary', 'Binary'),
)
def __init__(self):
self.reset()
def reset(self):
self.pend_item = None
self.word_items = []
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
def putg(self, ss, es, ann, txts):
self.put(ss, es, self.out_ann, [ann, txts])
def putpy(self, ss, es, ann, data):
self.put(ss, es, self.out_python, [ann, data])
def putbin(self, ss, es, ann_class, data):
self.put(ss, es, self.out_binary, [ann_class, data])
def flush_word(self, bus_width):
if not self.word_items:
return
word_size = self.options['wordsize']
items = self.word_items
ss, es = items[0][0], items[-1][1]
items = [i[2] for i in items]
if self.options['endianness'] == 'big':
items.reverse()
word = sum([d << (i * bus_width) for i, d in enumerate(items)])
txts = [self.fmt_word.format(word)]
self.putg(ss, es, Ann.WORD, txts)
self.putpy(ss, es, 'WORD', (word, bus_width, word_size))
if len(items) != word_size:
txts = ['incomplete word size', 'word size', 'ws']
self.putg(ss, es, Ann.WARN, txts)
self.word_items.clear()
def queue_word(self, now, item, bus_width):
wordsize = self.options['wordsize']
if not wordsize:
return
# Terminate a previously seen item of a word first. Emit the
# word's annotation when the last item's end was seen.
if self.word_items:
ss, _, data = self.word_items[-1]
es = now
self.word_items[-1] = (ss, es, data)
if len(self.word_items) == wordsize:
self.flush_word(bus_width)
# Start tracking the currently seen item (yet unknown end time).
if item is not None:
pend = (now, None, item)
self.word_items.append(pend)
def handle_bits(self, now, item, bus_width):
# Optionally flush a previously started item.
if self.pend_item:
ss, _, data = self.pend_item
self.pend_item = None
es = now
txts = [self.fmt_item.format(data)]
self.putg(ss, es, Ann.ITEM, txts)
self.putpy(ss, es, 'ITEM', (data, bus_width))
self.putbin(ss, es, 0, data.to_bytes(1, byteorder='big'))
# Optionally queue the currently seen item.
if item is not None:
self.pend_item = (now, None, item)
# Pass the current item to the word accumulation logic.
self.queue_word(now, item, bus_width)
def decode(self):
# Determine which (optional) channels have input data. Insist in
# a non-empty input data set. Cope with sparse connection maps.
# Store enough state to later "compress" sampled input data.
data_indices = [
idx if self.has_channel(idx) else None
for idx in range(Pin.DATA_0, Pin.DATA_N)
]
has_data = [idx for idx in data_indices if idx is not None]
if not has_data:
raise ChannelError('Need at least one data channel.')
max_connected = max(has_data)
# Pre-determine which input data to strip off, the width of
# individual items and multiplexed words, as well as format
# strings here. This simplifies call sites which run in tight
# loops later.
upper_data_bound = max_connected + 1
num_item_bits = upper_data_bound - Pin.DATA_0
num_word_items = self.options['wordsize']
num_word_bits = num_item_bits * num_word_items
num_digits = (num_item_bits + 4 - 1) // 4
self.fmt_item = "{{:0{}x}}".format(num_digits)
num_digits = (num_word_bits + 4 - 1) // 4
self.fmt_word = "{{:0{}x}}".format(num_digits)
# Determine .wait() conditions, depending on the presence of a
# clock signal. Either inspect samples on the configured edge of
# the clock, or inspect samples upon ANY edge of ANY of the pins
# which provide input data.
conds = []
cond_idx_clock = None
cond_idx_data_0 = None
cond_idx_data_N = None
cond_idx_reset = None
has_clock = self.has_channel(Pin.CLOCK)
if has_clock:
cond_idx_clock = len(conds)
edge = {
'rising': 'r',
'falling': 'f',
'either': 'e',
}.get(self.options['clock_edge'])
conds.append({Pin.CLOCK: edge})
else:
cond_idx_data_0 = len(conds)
conds.extend([{idx: 'e'} for idx in has_data])
cond_idx_data_N = len(conds)
has_reset = self.has_channel(Pin.RESET)
if has_reset:
cond_idx_reset = len(conds)
conds.append({Pin.RESET: 'e'})
reset_active = {
'low-active': 0,
'high-active': 1,
}.get(self.options['reset_polarity'])
# Keep processing the input stream. Assume "always zero" for
# not-connected input lines. Pass data bits (all inputs except
# clock and reset) to the handle_bits() method. Handle reset
# edges first and data changes then, within the same iteration.
# This results in robust operation for low-oversampled input.
in_reset = False
while True:
pins = self.wait(conds)
clock_edge = cond_idx_clock is not None and self.matched[cond_idx_clock]
data_edge = cond_idx_data_0 is not None and [idx for idx in range(cond_idx_data_0, cond_idx_data_N) if self.matched[idx]]
reset_edge = cond_idx_reset is not None and self.matched[cond_idx_reset]
if reset_edge:
in_reset = pins[Pin.RESET] == reset_active
if in_reset:
self.handle_bits(self.samplenum, None, num_item_bits)
self.flush_word(num_item_bits)
if in_reset:
continue
if clock_edge or data_edge:
data_bits = [0 if idx is None else pins[idx] for idx in data_indices]
data_bits = data_bits[:num_item_bits]
item = bitpack(data_bits)
self.handle_bits(self.samplenum, item, num_item_bits)
|