1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Steve R <steversig@virginmedia.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
'''
OUTPUT_PYTHON format:
Samples: The Samples array is sent when a DECODE_TIMEOUT occurs.
[<start>, <finish>, <state>]
<start> is the sample number of the start of the decoded bit. This may not line
up with the pulses that were converted into the decoded bit particularly for
Manchester encoding.
<finish> is the sample number of the end of the decoded bit.
<state> is a single character string which is the state of the decoded bit.
This can be
'0' zero or low
'1' one or high
'E' Error or invalid. This can be caused by missing transitions or the wrong
pulse lengths according to the rules for the particular encoding. In some cases
this is intentional (Oregon 1 preamble) and is part of the sync pattern. In
other cases the signal could simply be broken.
If there are more than self.max_errors (default 5) in decoding then the
OUTPUT_PYTHON is not sent as the data is assumed to be worthless.
There also needs to be a low for five times the preamble period at the end of
each set of pulses to trigger a DECODE_TIMEOUT and get the OUTPUT_PYTHON sent.
'''
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'ook'
name = 'OOK'
longname = 'On-off keying'
desc = 'On-off keying protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['ook']
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
annotations = (
('frame', 'Frame'),
('info', 'Info'),
('1111', '1111'),
('1010', '1010'),
('diffman', 'Diff Man'),
('nrz', 'NRZ'),
)
annotation_rows = (
('frame', 'Framing',(0,)),
('info', 'Info', (1,)),
('man1111', 'Man 1111', (2,)),
('man1010', 'Man 1010', (3,)),
('diffman', 'Diff Man', (4,)),
('nrz', 'NRZ', (5,)),
)
binary = (
('pulse-lengths', 'Pulse lengths'),
)
options = (
{'id': 'invert', 'desc': 'Invert data', 'default': 'no',
'values': ('no', 'yes')},
{'id': 'decodeas', 'desc': 'Decode type', 'default': 'Manchester',
'values': ('NRZ', 'Manchester', 'Diff Manchester')},
{'id': 'preamble', 'desc': 'Preamble', 'default': 'auto',
'values': ('auto', '1010', '1111')},
{'id': 'preamlen', 'desc': 'Filter length', 'default': '7',
'values': ('0', '3', '4', '5', '6', '7', '8', '9', '10')},
{'id': 'diffmanvar', 'desc': 'Transition at start', 'default': '1',
'values': ('1', '0')},
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.ss = self.es = -1
self.ss_1111 = self.ss_1010 = -1
self.samplenumber_last = None
self.sample_first = None
self.sample_high = 0
self.sample_low = 0
self.edge_count = 0
self.word_first = None
self.word_count = 0
self.state = 'IDLE'
self.lstate = None
self.lstate_1010 = None
self.insync = 0 # Preamble in sync flag
self.man_errors = 0
self.man_errors_1010 = 0
self.preamble = [] # Preamble buffer
self.half_time = -1 # Half time for man 1111
self.half_time_1010 = 0 # Half time for man 1010
self.pulse_lengths = [] # Pulse lengths
self.decoded = [] # Decoded stream
self.decoded_1010 = [] # Decoded stream
self.diff_man_trans = '0' # Transition
self.diff_man_len = 1 # Length of pulse in half clock periods
self.max_errors = 5 # Max number of errors to output OOK
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.invert = self.options['invert']
self.decodeas = self.options['decodeas']
self.preamble_val = self.options['preamble']
self.preamble_len = self.options['preamlen']
self.diffmanvar = self.options['diffmanvar']
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putp(self, data):
self.put(self.ss, self.es, self.out_python, data)
def dump_pulse_lengths(self):
if self.samplerate:
self.pulse_lengths[-1] = self.sample_first # Fix final pulse length.
s = 'Pulses(us)='
s += ','.join(str(int(int(x) * 1000000 / self.samplerate))
for x in self.pulse_lengths)
s += '\n'
self.put(self.samplenum - 10, self.samplenum, self.out_binary,
[0, bytes([ord(c) for c in s])])
def decode_nrz(self, start, samples, state):
self.pulse_lengths.append(samples)
# Use different high and low widths to compensate skewed waveforms.
dsamples = self.sample_high if state == '1' else self.sample_low
self.ss, self.es = start, start + samples
while samples > dsamples * 0.5:
if samples >= dsamples * 1.5: # More than one bit.
self.es = self.ss + dsamples
self.putx([5, [state]])
self.decoded.append([self.ss, self.es, state])
self.edge_count += 1
elif samples >= dsamples * 0.5 and samples < dsamples * 1.5: # Last bit.
self.putx([5, [state]])
self.decoded.append([self.ss, self.es, state])
self.edge_count += 1
else:
self.edge_count += 1
samples -= dsamples
self.ss += dsamples
self.es += dsamples
# Ensure 2nd row doesn't go past end of 1st row.
if self.es > self.samplenum:
self.es = self.samplenum
if self.state == 'DECODE_TIMEOUT': # Five bits - reset.
self.ss = self.decoded[0][0]
self.es = self.decoded[len(self.decoded) - 1][1]
self.dump_pulse_lengths()
self.putp(self.decoded)
self.decode_timeout()
break
def lock_onto_preamble(self, samples, state): # Filters and recovers clock.
self.edge_count += 1
l2s = 5 # Max ratio of long to short pulses.
# Filter incoming pulses to remove random noise.
if self.state == 'DECODE_TIMEOUT':
self.preamble = []
self.edge_count == 0
self.word_first = self.samplenum
self.sample_first = self.samplenum - self.samplenumber_last
self.state = 'WAITING_FOR_PREAMBLE'
self.man_errors = 0
pre_detect = int(self.preamble_len) # Number of valid pulses to detect.
pre_samples = self.samplenum - self.samplenumber_last
if len(self.preamble) > 0:
if (pre_samples * l2s < self.preamble[-1][1] or
self.preamble[-1][1] * l2s < pre_samples): # Garbage in.
self.put(self.samplenum, self.samplenum,
self.out_ann, [0, ['R']]) # Display resets.
self.preamble = [] # Clear buffer.
self.preamble.append([self.samplenumber_last,
pre_samples, state])
self.edge_count == 0
self.samplenumber_last = self.samplenum
self.word_first = self.samplenum
else:
self.preamble.append([self.samplenumber_last,
pre_samples, state])
else:
self.preamble.append([self.samplenumber_last,
pre_samples, state])
pre = self.preamble
if len(self.preamble) == pre_detect: # Have a valid series of pulses.
if self.preamble[0][2] == '1':
self.sample_high = self.preamble[0][1] # Allows skewed pulses.
self.sample_low = self.preamble[1][1]
else:
self.sample_high = self.preamble[1][1]
self.sample_low = self.preamble[0][1]
self.edge_count = 0
for i in range(len(self.preamble)):
if i > 1:
if (pre[i][1] > pre[i - 2][1] * 1.25 or
pre[i][1] * 1.25 < pre[i - 2][1]): # Adjust ref width.
if pre[i][2] == '1':
self.sample_high = pre[i][1]
else:
self.sample_low = pre[i][1]
# Display start of preamble.
if self.decodeas == 'NRZ':
self.decode_nrz(pre[i][0], pre[i][1], pre[i][2])
if self.decodeas == 'Manchester':
self.decode_manchester(pre[i][0], pre[i][1], pre[i][2])
if self.decodeas == 'Diff Manchester':
self.es = pre[i][0] + pre[i][1]
self.decode_diff_manchester(pre[i][0], pre[i][1], pre[i][2])
# Used to timeout signal.
self.sample_first = int((self.sample_high + self.sample_low)/2)
self.insync = 1
self.state = 'DECODING'
self.lstate = state
self.lstate_1010 = state
def decode_diff_manchester(self, start, samples, state):
self.pulse_lengths.append(samples)
# Use different high and low widths to compensate skewed waveforms.
dsamples = self.sample_high if state == '1' else self.sample_low
self.es = start + samples
p_length = round(samples / dsamples) # Find relative pulse length.
if self.edge_count == 0:
self.diff_man_trans = '1' # Very first pulse must be a transition.
self.diff_man_len = 1 # Must also be a half pulse.
self.ss = start
elif self.edge_count % 2 == 1: # Time to make a decision.
if self.diffmanvar == '0': # Transition at self.ss is a zero.
self.diff_man_trans = '0' if self.diff_man_trans == '1' else '1'
if self.diff_man_len == 1 and p_length == 1:
self.putx([4, [self.diff_man_trans]])
self.decoded.append([self.ss, self.es, self.diff_man_trans])
self.diff_man_trans = '1'
elif self.diff_man_len == 1 and p_length == 2:
self.es -= int(samples / 2)
self.putx([4, [self.diff_man_trans]])
self.decoded.append([self.ss, self.es, self.diff_man_trans])
self.diff_man_trans = '0'
self.edge_count += 1 # Add a virt edge to keep in sync with clk.
elif self.diff_man_len == 2 and p_length == 1:
self.putx([4, [self.diff_man_trans]])
self.decoded.append([self.ss, self.es, self.diff_man_trans])
self.diff_man_trans = '1'
elif self.diff_man_len == 2 and p_length == 2: # Double illegal E E.
self.es -= samples
self.putx([4, ['E']])
self.decoded.append([self.ss, self.es, 'E'])
self.ss = self.es
self.es += samples
self.putx([4, ['E']])
self.decoded.append([self.ss, self.es, 'E'])
self.diff_man_trans = '1'
elif self.diff_man_len == 1 and p_length > 4:
if self.state == 'DECODE_TIMEOUT':
self.es = self.ss + 2 * self.sample_first
self.putx([4, [self.diff_man_trans]]) # Write error.
self.decoded.append([self.ss, self.es, self.diff_man_trans])
self.ss = self.decoded[0][0]
self.es = self.decoded[len(self.decoded) - 1][1]
self.dump_pulse_lengths()
if self.man_errors < self.max_errors:
self.putp(self.decoded)
else:
error_message = 'Probably not Diff Manchester encoded'
self.ss = self.word_first
self.putx([1, [error_message]])
self.decode_timeout()
self.diff_man_trans = '1'
self.ss = self.es
self.diff_man_len = p_length # Save the previous length.
self.edge_count += 1
def decode_manchester_sim(self, start, samples, state,
dsamples, half_time, lstate, ss, pream):
ook_bit = []
errors = 0
if self.edge_count == 0:
half_time += 1
if samples > 0.75 * dsamples and samples <= 1.5 * dsamples: # Long p.
half_time += 2
if half_time % 2 == 0: # Transition.
es = start
else:
es = start + int(samples / 2)
if ss == start:
lstate = 'E'
es = start + samples
if not (self.edge_count == 0 and pream == '1010'): # Skip first p.
ook_bit = [ss, es, lstate]
lstate = state
ss = es
elif samples > 0.25 * dsamples and samples <= 0.75 * dsamples: # Short p.
half_time += 1
if (half_time % 2 == 0): # Transition.
es = start + samples
ook_bit = [ss, es, lstate]
lstate = state
ss = es
else: # 1st half.
ss = start
lstate = state
else: # Too long or too short - error.
errors = 1
if self.state != 'DECODE_TIMEOUT': # Error condition.
lstate = 'E'
es = ss + samples
else: # Assume final half bit buried in timeout pulse.
es = ss + self.sample_first
ook_bit = [ss, es, lstate]
ss = es
return (half_time, lstate, ss, ook_bit, errors)
def decode_manchester(self, start, samples, state):
self.pulse_lengths.append(samples)
# Use different high and low widths to compensate skewed waveforms.
dsamples = self.sample_high if state == '1' else self.sample_low
if self.preamble_val != '1010': # 1111 preamble is half clock T.
(self.half_time, self.lstate, self.ss_1111, ook_bit, errors) = (
self.decode_manchester_sim(start, samples, state, dsamples * 2,
self.half_time, self.lstate,
self.ss_1111, '1111'))
self.man_errors += errors
if ook_bit != []:
self.decoded.append([ook_bit[0], ook_bit[1], ook_bit[2]])
if self.preamble_val != '1111': # 1010 preamble is clock T.
(self.half_time_1010, self.lstate_1010, self.ss_1010,
ook_bit, errors) = (
self.decode_manchester_sim(start, samples, state, dsamples,
self.half_time_1010, self.lstate_1010,
self.ss_1010, '1010'))
self.man_errors_1010 += errors
if ook_bit != []:
self.decoded_1010.append([ook_bit[0], ook_bit[1], ook_bit[2]])
self.edge_count += 1
# Stream display and save ook_bit.
if ook_bit != []:
self.ss, self.es = ook_bit[0], ook_bit[1]
if self.preamble_val == '1111':
self.putx([2, [ook_bit[2]]])
if self.preamble_val == '1010':
self.putx([3, [ook_bit[2]]])
if self.state == 'DECODE_TIMEOUT': # End of packet.
self.dump_pulse_lengths()
decoded = []
# If 1010 preamble has less errors use it.
if (self.preamble_val == '1010' or
(self.man_errors_1010 < self.max_errors and
self.man_errors_1010 < self.man_errors and
len(self.decoded_1010) > 0)):
decoded = self.decoded_1010
man_errors = self.man_errors_1010
d_row = 3
else:
decoded = self.decoded
man_errors = self.man_errors
d_row = 2
if self.preamble_val == 'auto': # Display OOK packet.
for i in range(len(decoded)):
self.ss, self.es = decoded[i][0], decoded[i][1]
self.putx([d_row, [decoded[i][2]]])
if (man_errors < self.max_errors and len(decoded) > 0):
self.ss, self.es = decoded[0][0], decoded[len(decoded) - 1][1]
self.putp(decoded)
else:
error_message = 'Not Manchester encoded or wrong preamble'
self.ss = self.word_first
self.putx([1, [error_message]])
self.put(self.es, self.es, self.out_ann, [0, ['T']]) # Mark timeout.
self.decode_timeout()
def decode_timeout(self):
self.word_count = 0
self.samplenumber_last = None
self.edge_count = 0
self.man_errors = 0 # Clear the bit error counters.
self.man_errors_1010 = 0
self.state = 'IDLE'
self.wait({0: 'e'}) # Get rid of long pulse.
self.samplenumber_last = self.samplenum
self.word_first = self.samplenum
self.insync = 0 # Preamble in sync flag
self.preamble = [] # Preamble buffer
self.half_time = -1 # Half time for man 1111
self.half_time_1010 = 0 # Half time for man 1010
self.decoded = [] # Decoded bits
self.decoded_1010 = [] # Decoded bits for man 1010
self.pulse_lengths = []
def decode(self):
while True:
if self.edge_count == 0: # Waiting for a signal.
pin = self.wait({0: 'e'})
self.state = 'DECODING'
else:
pin = self.wait([{0: 'e'}, {'skip': 5 * self.sample_first}])
if self.matched[1] and not self.matched[0]: # No edges for 5 p's.
self.state = 'DECODE_TIMEOUT'
if not self.samplenumber_last: # Set counters to start of signal.
self.samplenumber_last = self.samplenum
self.word_first = self.samplenum
continue
samples = self.samplenum - self.samplenumber_last
if not self.sample_first: # Get number of samples for first pulse.
self.sample_first = samples
pinstate = pin[0]
if self.state == 'DECODE_TIMEOUT': # No edge so flip the state.
pinstate = int(not pinstate)
if self.invert == 'yes': # Invert signal.
pinstate = int(not pinstate)
state = '0' if pinstate else '1'
# No preamble filtering or checking and no skew correction.
if self.preamble_len == '0':
self.sample_high = self.sample_first
self.sample_low = self.sample_first
self.insync = 0
if self.insync == 0:
self.lock_onto_preamble(samples, state)
else:
if self.decodeas == 'NRZ':
self.decode_nrz(self.samplenumber_last, samples, state)
if self.decodeas == 'Manchester':
self.decode_manchester(self.samplenumber_last,
samples, state)
if self.decodeas == 'Diff Manchester':
self.decode_diff_manchester(self.samplenumber_last,
samples, state)
self.samplenumber_last = self.samplenum
|