1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012 Iztok Jeras <iztok.jeras@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# 1-Wire protocol decoder (link layer)
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 1
id = 'onewire_link'
name = '1-Wire link layer'
longname = '1-Wire serial communication bus (link layer)'
desc = 'Bidirectional, half-duplex, asynchronous serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['onewire_link']
probes = [
{'id': 'owr', 'name': 'OWR', 'desc': '1-Wire signal line'},
]
optional_probes = [
{'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power supply pin'},
]
options = {
'overdrive': ['Overdrive mode', 'no'],
# Time options (specified in microseconds):
'cnt_normal_bit': ['Normal mode sample bit time (us)', 15],
'cnt_normal_slot': ['Normal mode data slot time (us)', 60],
'cnt_normal_presence': ['Normal mode sample presence time (us)', 75],
'cnt_normal_reset': ['Normal mode reset time (us)', 480],
'cnt_overdrive_bit': ['Overdrive mode sample bit time (us)', 2],
# 'cnt_overdrive_slot': ['Overdrive mode data slot time (us)', 7.3],
'cnt_overdrive_slot': ['Overdrive mode data slot time (us)', 7],
'cnt_overdrive_presence': ['Overdrive mode sample presence time (us)', 10],
'cnt_overdrive_reset': ['Overdrive mode reset time (us)', 48],
}
annotations = [
['bit', 'Bit'],
['warnings', 'Warnings'],
['reset', 'Reset'],
['presence', 'Presence'],
['overdrive', 'Overdrive mode notifications'],
]
def putm(self, data):
self.put(0, 0, self.out_ann, data)
def putpb(self, data):
self.put(self.fall, self.samplenum, self.out_proto, data)
def putb(self, data):
self.put(self.fall, self.samplenum, self.out_ann, data)
def putx(self, data):
self.put(self.fall, self.cnt_bit[self.overdrive], self.out_ann, data)
def putfr(self, data):
self.put(self.fall, self.rise, self.out_ann, data)
def putprs(self, data):
self.put(self.rise, self.samplenum, self.out_proto, data)
def putrs(self, data):
self.put(self.rise, self.samplenum, self.out_ann, data)
def __init__(self, **kwargs):
self.samplerate = None
self.samplenum = 0
self.state = 'WAIT FOR FALLING EDGE'
self.present = 0
self.bit = 0
self.bit_cnt = 0
self.command = 0
self.overdrive = 0
self.fall = 0
self.rise = 0
def start(self):
self.out_proto = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key != srd.SRD_CONF_SAMPLERATE:
return
self.samplerate = value
# Check if samplerate is appropriate.
if self.options['overdrive'] == 'yes':
if self.samplerate < 2000000:
self.putm([1, ['Sampling rate is too low. Must be above ' +
'2MHz for proper overdrive mode decoding.']])
elif self.samplerate < 5000000:
self.putm([1, ['Sampling rate is suggested to be above 5MHz ' +
'for proper overdrive mode decoding.']])
else:
if self.samplerate < 400000:
self.putm([1, ['Sampling rate is too low. Must be above ' +
'400kHz for proper normal mode decoding.']])
elif (self.samplerate < 1000000):
self.putm([1, ['Sampling rate is suggested to be above ' +
'1MHz for proper normal mode decoding.']])
# The default 1-Wire time base is 30us. This is used to calculate
# sampling times.
samplerate = float(self.samplerate)
x = float(self.options['cnt_normal_bit']) / 1000000.0
self.cnt_normal_bit = int(samplerate * x) - 1
x = float(self.options['cnt_normal_slot']) / 1000000.0
self.cnt_normal_slot = int(samplerate * x) - 1
x = float(self.options['cnt_normal_presence']) / 1000000.0
self.cnt_normal_presence = int(samplerate * x) - 1
x = float(self.options['cnt_normal_reset']) / 1000000.0
self.cnt_normal_reset = int(samplerate * x) - 1
x = float(self.options['cnt_overdrive_bit']) / 1000000.0
self.cnt_overdrive_bit = int(samplerate * x) - 1
x = float(self.options['cnt_overdrive_slot']) / 1000000.0
self.cnt_overdrive_slot = int(samplerate * x) - 1
x = float(self.options['cnt_overdrive_presence']) / 1000000.0
self.cnt_overdrive_presence = int(samplerate * x) - 1
x = float(self.options['cnt_overdrive_reset']) / 1000000.0
self.cnt_overdrive_reset = int(samplerate * x) - 1
# Organize values into lists.
self.cnt_bit = [self.cnt_normal_bit, self.cnt_overdrive_bit]
self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence]
self.cnt_reset = [self.cnt_normal_reset, self.cnt_overdrive_reset]
self.cnt_slot = [self.cnt_normal_slot, self.cnt_overdrive_slot]
# Check if sample times are in the allowed range.
time_min = float(self.cnt_normal_bit) / self.samplerate
time_max = float(self.cnt_normal_bit + 1) / self.samplerate
if (time_min < 0.000005) or (time_max > 0.000015):
self.putm([1, ['The normal mode data sample time interval ' +
'(%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).'
% (time_min * 1000000, time_max * 1000000)]])
time_min = float(self.cnt_normal_presence) / self.samplerate
time_max = float(self.cnt_normal_presence + 1) / self.samplerate
if (time_min < 0.0000681) or (time_max > 0.000075):
self.putm([1, ['The normal mode presence sample time interval ' +
'(%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).'
% (time_min * 1000000, time_max * 1000000)]])
time_min = float(self.cnt_overdrive_bit) / self.samplerate
time_max = float(self.cnt_overdrive_bit + 1) / self.samplerate
if (time_min < 0.000001) or (time_max > 0.000002):
self.putm([1, ['The overdrive mode data sample time interval ' +
'(%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).'
% (time_min * 1000000, time_max * 1000000)]])
time_min = float(self.cnt_overdrive_presence) / self.samplerate
time_max = float(self.cnt_overdrive_presence + 1) / self.samplerate
if (time_min < 0.0000073) or (time_max > 0.000010):
self.putm([1, ['The overdrive mode presence sample time interval ' +
'(%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).'
% (time_min*1000000, time_max*1000000)]])
def decode(self, ss, es, data):
if self.samplerate is None:
raise Exception("Cannot decode without samplerate.")
for (self.samplenum, (owr, pwr)) in data:
# State machine.
if self.state == 'WAIT FOR FALLING EDGE':
# The start of a cycle is a falling edge.
if owr != 0:
continue
# Save the sample number for the falling edge.
self.fall = self.samplenum
# Go to waiting for sample time.
self.state = 'WAIT FOR DATA SAMPLE'
elif self.state == 'WAIT FOR DATA SAMPLE':
# Sample data bit.
t = self.samplenum - self.fall
if t == self.cnt_bit[self.overdrive]:
self.bit = owr
self.state = 'WAIT FOR DATA SLOT END'
elif self.state == 'WAIT FOR DATA SLOT END':
# A data slot ends in a recovery period, otherwise, this is
# probably a reset.
t = self.samplenum - self.fall
if t != self.cnt_slot[self.overdrive]:
continue
if owr == 0:
# This seems to be a reset slot, wait for its end.
self.state = 'WAIT FOR RISING EDGE'
continue
self.putb([0, ['Bit: %d' % self.bit, '%d' % self.bit]])
self.putpb(['BIT', self.bit])
# Checking the first command to see if overdrive mode
# should be entered.
if self.bit_cnt <= 8:
self.command |= (self.bit << self.bit_cnt)
elif self.bit_cnt == 8 and self.command in [0x3c, 0x69]:
self.putx([4, ['Entering overdrive mode', 'Overdrive on']])
# Increment the bit counter.
self.bit_cnt += 1
# Wait for next slot.
self.state = 'WAIT FOR FALLING EDGE'
elif self.state == 'WAIT FOR RISING EDGE':
# The end of a cycle is a rising edge.
if owr != 1:
continue
# Check if this was a reset cycle.
t = self.samplenum - self.fall
if t > self.cnt_normal_reset:
# Save the sample number for the rising edge.
self.rise = self.samplenum
self.putfr([2, ['Reset', 'Rst', 'R']])
self.state = 'WAIT FOR PRESENCE DETECT'
# Exit overdrive mode.
if self.overdrive:
self.putx([4, ['Exiting overdrive mode', 'Overdrive off']])
self.overdrive = 0
# Clear command bit counter and data register.
self.bit_cnt = 0
self.command = 0
elif (t > self.cnt_overdrive_reset) and self.overdrive:
# Save the sample number for the rising edge.
self.rise = self.samplenum
self.putfr([2, ['Reset', 'Rst', 'R']])
self.state = "WAIT FOR PRESENCE DETECT"
# Otherwise this is assumed to be a data bit.
else:
self.state = "WAIT FOR FALLING EDGE"
elif self.state == 'WAIT FOR PRESENCE DETECT':
# Sample presence status.
t = self.samplenum - self.rise
if t == self.cnt_presence[self.overdrive]:
self.present = owr
self.state = 'WAIT FOR RESET SLOT END'
elif self.state == 'WAIT FOR RESET SLOT END':
# A reset slot ends in a long recovery period.
t = self.samplenum - self.rise
if t != self.cnt_reset[self.overdrive]:
continue
if owr == 0:
# This seems to be a reset slot, wait for its end.
self.state = 'WAIT FOR RISING EDGE'
continue
p = 'false' if self.present else 'true'
self.putrs([3, ['Presence: %s' % p, 'Presence', 'Pres', 'P']])
self.putprs(['RESET/PRESENCE', not self.present])
# Wait for next slot.
self.state = 'WAIT FOR FALLING EDGE'
else:
raise Exception('Invalid state: %s' % self.state)
|