1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2012 Iztok Jeras <iztok.jeras@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# 1-Wire link layer protocol decoder
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 1
id = 'onewire_link'
name = '1-Wire link layer'
longname = '1-Wire serial communication bus'
desc = 'Bidirectional, half-duplex, asynchronous serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['onewire_link']
probes = [
{'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'},
]
optional_probes = [
{'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'},
]
options = {
'overdrive' : ['Overdrive', 1],
'cnt_normal_bit' : ['Time (in samplerate periods) for normal mode sample bit' , 0],
'cnt_normal_presence' : ['Time (in samplerate periods) for normal mode sample presence', 0],
'cnt_normal_reset' : ['Time (in samplerate periods) for normal mode reset' , 0],
'cnt_overdrive_bit' : ['Time (in samplerate periods) for overdrive mode sample bit' , 0],
'cnt_overdrive_presence': ['Time (in samplerate periods) for overdrive mode sample presence', 0],
'cnt_overdrive_reset' : ['Time (in samplerate periods) for overdrive mode reset' , 0],
}
annotations = [
['Link', 'Link layer events (reset, presence, bit slots)'],
]
def __init__(self, **kwargs):
# Common variables
self.samplenum = 0
# Link layer variables
self.state = 'WAIT FOR FALLING EDGE'
self.present = 0
self.bit = 0
self.bit_cnt = 0
self.command = 0
self.overdrive = 0
# Event timing variables
self.fall = 0
self.rise = 0
def start(self, metadata):
self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire_link')
self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire_link')
# check if samplerate is appropriate
self.samplerate = metadata['samplerate']
if (self.options['overdrive']):
self.put(0, 0, self.out_ann, [0,
['NOTE: Sample rate checks assume overdrive mode.']])
if (self.samplerate < 2000000):
self.put(0, 0, self.out_ann, [0,
['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']])
elif (self.samplerate < 5000000):
self.put(0, 0, self.out_ann, [0,
['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']])
else:
self.put(0, 0, self.out_ann, [0,
['NOTE: Sample rate checks assume normal mode only.']])
if (self.samplerate < 400000):
self.put(0, 0, self.out_ann, [0,
['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']])
elif (self.samplerate < 1000000):
self.put(0, 0, self.out_ann, [0,
['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']])
# The default 1-Wire time base is 30us, this is used to calculate sampling times.
if (self.options['cnt_normal_bit']):
self.cnt_normal_bit = self.options['cnt_normal_bit']
else:
self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns
if (self.options['cnt_normal_presence']):
self.cnt_normal_presence = self.options['cnt_normal_presence']
else:
self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns
if (self.options['cnt_normal_reset']):
self.cnt_normal_reset = self.options['cnt_normal_reset']
else:
self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns
if (self.options['cnt_overdrive_bit']):
self.cnt_overdrive_bit = self.options['cnt_overdrive_bit']
else:
self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns
if (self.options['cnt_overdrive_presence']):
self.cnt_overdrive_presence = self.options['cnt_overdrive_presence']
else:
self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns
if (self.options['cnt_overdrive_reset']):
self.cnt_overdrive_reset = self.options['cnt_overdrive_reset']
else:
self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns
# calculating the slot size
self.cnt_normal_slot = int(float(self.samplerate) * 0.000060) - 1 # 60ns
self.cnt_overdrive_slot = int(float(self.samplerate) * 0.000006) - 1 # 6ns
# organize values into lists
self.cnt_bit = [self.cnt_normal_bit , self.cnt_overdrive_bit ]
self.cnt_presence = [self.cnt_normal_presence, self.cnt_overdrive_presence]
self.cnt_reset = [self.cnt_normal_reset , self.cnt_overdrive_reset ]
self.cnt_slot = [self.cnt_normal_slot , self.cnt_overdrive_slot ]
# Check if sample times are in the allowed range
time_min = float(self.cnt_normal_bit ) / self.samplerate
time_max = float(self.cnt_normal_bit+1) / self.samplerate
if ( (time_min < 0.000005) or (time_max > 0.000015) ) :
self.put(0, 0, self.out_ann, [0,
['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).'
% (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_normal_presence ) / self.samplerate
time_max = float(self.cnt_normal_presence+1) / self.samplerate
if ( (time_min < 0.0000681) or (time_max > 0.000075) ) :
self.put(0, 0, self.out_ann, [0,
['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).'
% (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_overdrive_bit ) / self.samplerate
time_max = float(self.cnt_overdrive_bit+1) / self.samplerate
if ( (time_min < 0.000001) or (time_max > 0.000002) ) :
self.put(0, 0, self.out_ann, [0,
['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).'
% (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_overdrive_presence ) / self.samplerate
time_max = float(self.cnt_overdrive_presence+1) / self.samplerate
if ( (time_min < 0.0000073) or (time_max > 0.000010) ) :
self.put(0, 0, self.out_ann, [0,
['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).'
% (time_min*1000000, time_max*1000000)]])
def report(self):
pass
def decode(self, ss, es, data):
for (self.samplenum, (owr, pwr)) in data:
# State machine.
if self.state == 'WAIT FOR FALLING EDGE':
# The start of a cycle is a falling edge.
if (owr == 0):
# Save the sample number for the falling edge.
self.fall = self.samplenum
# Go to waiting for sample time
self.state = 'WAIT FOR DATA SAMPLE'
elif self.state == 'WAIT FOR DATA SAMPLE':
# Sample data bit
if (self.samplenum - self.fall == self.cnt_bit[self.overdrive]):
self.bit = owr & 0x1
if (self.bit): self.state = 'WAIT FOR FALLING EDGE'
else : self.state = 'WAIT FOR RISING EDGE'
self.put(self.fall, self.cnt_bit[self.overdrive], self.out_ann, [0, ['BIT: %01x' % self.bit]])
self.put(self.fall, self.cnt_bit[self.overdrive], self.out_proto, ['BIT', self.bit])
# Checking the first command to see if overdrive mode should be entered
if (self.bit_cnt <= 8):
self.command = self.command | (self.bit << self.bit_cnt)
elif (self.bit_cnt == 8):
if (self.command in [0x3c, 0x69]):
self.put(self.fall, self.cnt_bit[self.overdrive], self.out_ann, [0, ['ENTER OVERDRIVE MODE']])
# incrementing the bit counter
self.bit_cnt += 1
elif self.state == 'WAIT FOR RISING EDGE':
# The end of a cycle is a rising edge.
if (owr == 1):
# Check if this was a reset cycle
if (self.samplenum - self.fall > self.cnt_normal_reset):
# Save the sample number for the falling edge.
self.rise = self.samplenum
self.state = "WAIT FOR PRESENCE DETECT"
self.put(self.fall, self.rise, self.out_ann, [0, ['RESET']])
self.put(self.fall, self.rise, self.out_proto, ['RESET', 0])
# Reset the timer.
self.fall = self.samplenum
# Exit overdrive mode
self.put(self.fall, self.cnt_bit[self.overdrive], self.out_ann, [0, ['EXIT OVERDRIVE MODE']])
self.overdrive = 0
self.bit_cnt = 0
self.command = 0
elif ((self.samplenum - self.fall > self.cnt_overdrive_reset) and (self.overdrive)):
# Save the sample number for the falling edge.
self.rise = self.samplenum
self.state = "WAIT FOR PRESENCE DETECT"
self.put(self.fall, self.rise, self.out_ann, [0, ['RESET']])
self.put(self.fall, self.rise, self.out_proto, ['RESET', 0])
# Reset the timer.
self.fall = self.samplenum
# Otherwise this is assumed to be a data bit.
else :
self.state = "WAIT FOR FALLING EDGE"
elif self.state == 'WAIT FOR PRESENCE DETECT':
# Sample presence status
if (self.samplenum - self.rise == self.cnt_presence[self.overdrive]):
self.present = owr & 0x1
# Save the sample number for the falling edge.
if not (self.present) : self.fall = self.samplenum
# create presence detect event
if (self.present) : self.state = 'WAIT FOR FALLING EDGE'
else : self.state = 'WAIT FOR RISING EDGE'
self.put(self.samplenum, 0, self.out_ann, [0, ['PRESENCE: ' + "False" if self.present else "True"]])
self.put(self.samplenum, 0, self.out_proto, ['PRESENCE', self.present])
else:
raise Exception('Invalid state: %d' % self.state)
|