1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# 1-Wire protocol decoder
import sigrokdecode as srd
# Annotation feed formats
ANN_LINK = 0
ANN_NETWORK = 1
ANN_TRANSPORT = 2
# a dictionary of ROM commands and their names
rom_command = {0x33: "READ ROM",
0x0f: "CONDITIONAL READ ROM",
0xcc: "SKIP ROM",
0x55: "MATCH ROM",
0xf0: "SEARCH ROM",
0xec: "CONDITIONAL SEARCH ROM",
0x3c: "OVERDRIVE SKIP ROM",
0x6d: "OVERDRIVE MATCH ROM"}
class Decoder(srd.Decoder):
api_version = 1
id = 'onewire'
name = '1-Wire'
longname = ''
desc = '1-Wire bus and MicroLan'
license = 'gplv2+'
inputs = ['logic']
outputs = ['onewire']
probes = [
{'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'},
]
optional_probes = [
{'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'},
]
options = {
'overdrive' : ['Overdrive', 1],
'cnt_normal_bit' : ['Time (in samplerate periods) for normal mode sample bit' , 0],
'cnt_normal_presence' : ['Time (in samplerate periods) for normal mode sample presence', 0],
'cnt_normal_reset' : ['Time (in samplerate periods) for normal mode reset' , 0],
'cnt_overdrive_bit' : ['Time (in samplerate periods) for overdrive mode sample bit' , 0],
'cnt_overdrive_presence': ['Time (in samplerate periods) for overdrive mode sample presence', 0],
'cnt_overdrive_reset' : ['Time (in samplerate periods) for overdrive mode reset' , 0],
}
annotations = [
['Link', 'Link layer events (reset, presence, bit slots)'],
['Network', 'Network layer events (device addressing)'],
['Transport', 'Transport layer events'],
]
def __init__(self, **kwargs):
# Common variables
self.samplenum = 0
# Link layer variables
self.lnk_state = 'WAIT FOR FALLING EDGE'
self.lnk_event = 'NONE'
self.lnk_present = 0
self.lnk_bit = 0
self.lnk_overdrive = 0
# Event timing variables
self.lnk_fall = 0
self.lnk_rise = 0
self.net_beg = 0
self.net_end = 0
# Network layer variables
self.net_state = 'IDLE'
self.net_cnt = 0
self.net_search = "P"
self.net_data_p = 0x0
self.net_data_n = 0x0
self.net_data = 0x0
self.net_rom = 0x0000000000000000
def start(self, metadata):
self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire')
self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire')
# check if samplerate is appropriate
self.samplerate = metadata['samplerate']
if (self.options['overdrive']):
self.put(0, 0, self.out_ann, [ANN_LINK, ['NOTE: Sample rate checks assume overdrive mode.']])
if (self.samplerate < 2000000):
self.put(0, 0, self.out_ann, [ANN_LINK, ['ERROR: Sampling rate is too low must be above 2MHz for proper overdrive mode decoding.']])
elif (self.samplerate < 5000000):
self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: Sampling rate is suggested to be above 5MHz for proper overdrive mode decoding.']])
else:
self.put(0, 0, self.out_ann, [ANN_LINK, ['NOTE: Sample rate checks assume normal mode only.']])
if (self.samplerate < 400000):
self.put(0, 0, self.out_ann, [ANN_LINK, ['ERROR: Sampling rate is too low must be above 400kHz for proper normal mode decoding.']])
elif (self.samplerate < 1000000):
self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: Sampling rate is suggested to be above 1MHz for proper normal mode decoding.']])
# The default 1-Wire time base is 30us, this is used to calculate sampling times.
if (self.options['cnt_normal_bit']): self.cnt_normal_bit = self.options['cnt_normal_bit']
else: self.cnt_normal_bit = int(float(self.samplerate) * 0.000015) - 1 # 15ns
if (self.options['cnt_normal_presence']): self.cnt_normal_presence = self.options['cnt_normal_presence']
else: self.cnt_normal_presence = int(float(self.samplerate) * 0.000075) - 1 # 75ns
if (self.options['cnt_normal_reset']): self.cnt_normal_reset = self.options['cnt_normal_reset']
else: self.cnt_normal_reset = int(float(self.samplerate) * 0.000480) - 1 # 480ns
if (self.options['cnt_overdrive_bit']): self.cnt_overdrive_bit = self.options['cnt_overdrive_bit']
else: self.cnt_overdrive_bit = int(float(self.samplerate) * 0.000002) - 1 # 2ns
if (self.options['cnt_overdrive_presence']): self.cnt_overdrive_presence = self.options['cnt_overdrive_presence']
else: self.cnt_overdrive_presence = int(float(self.samplerate) * 0.000010) - 1 # 10ns
if (self.options['cnt_overdrive_reset']): self.cnt_overdrive_reset = self.options['cnt_overdrive_reset']
else: self.cnt_overdrive_reset = int(float(self.samplerate) * 0.000048) - 1 # 48ns
# Check if sample times are in the allowed range
time_min = float(self.cnt_normal_bit ) / self.samplerate
time_max = float(self.cnt_normal_bit+1) / self.samplerate
if ( (time_min < 0.000005) or (time_max > 0.000015) ) :
self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The normal mode data sample time interval (%2.1fus-%2.1fus) should be inside (5.0us, 15.0us).' % (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_normal_presence ) / self.samplerate
time_max = float(self.cnt_normal_presence+1) / self.samplerate
if ( (time_min < 0.0000681) or (time_max > 0.000075) ) :
self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The normal mode presence sample time interval (%2.1fus-%2.1fus) should be inside (68.1us, 75.0us).' % (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_overdrive_bit ) / self.samplerate
time_max = float(self.cnt_overdrive_bit+1) / self.samplerate
if ( (time_min < 0.000001) or (time_max > 0.000002) ) :
self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The overdrive mode data sample time interval (%2.1fus-%2.1fus) should be inside (1.0us, 2.0us).' % (time_min*1000000, time_max*1000000)]])
time_min = float(self.cnt_overdrive_presence ) / self.samplerate
time_max = float(self.cnt_overdrive_presence+1) / self.samplerate
if ( (time_min < 0.0000073) or (time_max > 0.000010) ) :
self.put(0, 0, self.out_ann, [ANN_LINK, ['WARNING: The overdrive mode presence sample time interval (%2.1fus-%2.1fus) should be inside (7.3us, 10.0us).' % (time_min*1000000, time_max*1000000)]])
def report(self):
pass
def decode(self, ss, es, data):
for (self.samplenum, (owr, pwr)) in data:
# Data link layer
# Clear events.
self.lnk_event = "NONE"
# State machine.
if self.lnk_state == 'WAIT FOR FALLING EDGE':
# The start of a cycle is a falling edge.
if (owr == 0):
# Save the sample number for the falling edge.
self.lnk_fall = self.samplenum
# Go to waiting for sample time
self.lnk_state = 'WAIT FOR DATA SAMPLE'
elif self.lnk_state == 'WAIT FOR DATA SAMPLE':
# Sample data bit
if (self.lnk_overdrive): cnt = self.cnt_overdrive_bit
else : cnt = self.cnt_normal_bit
if (self.samplenum - self.lnk_fall == cnt):
self.lnk_bit = owr & 0x1
self.lnk_event = "DATA BIT"
if (self.lnk_bit): self.lnk_state = 'WAIT FOR FALLING EDGE'
else : self.lnk_state = 'WAIT FOR RISING EDGE'
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK, ['BIT: %01x' % self.lnk_bit]])
elif self.lnk_state == 'WAIT FOR RISING EDGE':
# The end of a cycle is a rising edge.
if (owr == 1):
# Check if this was a reset cycle
if (self.samplenum - self.lnk_fall > self.cnt_normal_reset):
# Save the sample number for the falling edge.
self.lnk_rise = self.samplenum
# Send a reset event to the next protocol layer.
self.lnk_event = "RESET"
self.lnk_state = "WAIT FOR PRESENCE DETECT"
self.put(self.lnk_fall, self.samplenum, self.out_proto, ['RESET'])
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK , ['RESET']])
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_NETWORK , ['RESET']])
# Reset the timer.
self.lnk_fall = self.samplenum
elif ((self.samplenum - self.lnk_fall > self.cnt_overdrive_reset) and (self.lnk_overdrive)):
# Save the sample number for the falling edge.
self.lnk_rise = self.samplenum
# Send a reset event to the next protocol layer.
self.lnk_event = "RESET"
self.lnk_state = "WAIT FOR PRESENCE DETECT"
self.put(self.lnk_fall, self.samplenum, self.out_proto, ['RESET OVERDRIVE'])
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK , ['RESET OVERDRIVE']])
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_NETWORK , ['RESET OVERDRIVE']])
# Reset the timer.
self.lnk_fall = self.samplenum
# Otherwise this is assumed to be a data bit.
else :
self.lnk_state = "WAIT FOR FALLING EDGE"
elif self.lnk_state == 'WAIT FOR PRESENCE DETECT':
# Sample presence status
if (self.lnk_overdrive): cnt = self.cnt_overdrive_presence
else : cnt = self.cnt_normal_presence
if (self.samplenum - self.lnk_rise == cnt):
self.lnk_present = owr & 0x1
# Save the sample number for the falling edge.
if not (self.lnk_present) : self.lnk_fall = self.samplenum
# create presence detect event
#self.lnk_event = "PRESENCE DETECT"
if (self.lnk_present) : self.lnk_state = 'WAIT FOR FALLING EDGE'
else : self.lnk_state = 'WAIT FOR RISING EDGE'
present_str = "False" if self.lnk_present else "True"
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_LINK , ['PRESENCE: ' + present_str]])
self.put(self.lnk_fall, self.samplenum, self.out_ann, [ANN_NETWORK, ['PRESENCE: ' + present_str]])
else:
raise Exception('Invalid lnk_state: %d' % self.lnk_state)
# Network layer
# State machine.
if (self.lnk_event == "RESET"):
self.net_state = "COMMAND"
self.net_search = "P"
self.net_cnt = 0
elif (self.net_state == "IDLE"):
pass
elif (self.net_state == "COMMAND"):
# Receiving and decoding a ROM command
if (self.onewire_collect(8)):
self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK, ['ROM COMMAND: 0x%02x \'%s\'' % (self.net_data, rom_command[self.net_data])]])
if (self.net_data == 0x33): # READ ROM
self.net_state = "GET ROM"
elif (self.net_data == 0x0f): # CONDITIONAL READ ROM
self.net_state = "GET ROM"
elif (self.net_data == 0xcc): # SKIP ROM
self.net_state = "TRANSPORT"
elif (self.net_data == 0x55): # MATCH ROM
self.net_state = "GET ROM"
elif (self.net_data == 0xf0): # SEARCH ROM
self.net_state = "SEARCH ROM"
elif (self.net_data == 0xec): # CONDITIONAL SEARCH ROM
self.net_state = "SEARCH ROM"
elif (self.net_data == 0x3c): # OVERDRIVE SKIP ROM
self.lnk_overdrive = 1
self.net_state = "TRANSPORT"
elif (self.net_data == 0x69): # OVERDRIVE MATCH ROM
self.lnk_overdrive = 1
self.net_state = "GET ROM"
elif (self.net_state == "GET ROM"):
# A 64 bit device address is selected
# family code (1B) + serial number (6B) + CRC (1B)
if (self.onewire_collect(64)):
self.net_rom = self.net_data & 0xffffffffffffffff
self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
self.net_state = "TRANSPORT"
elif (self.net_state == "SEARCH ROM"):
# A 64 bit device address is searched for
# family code (1B) + serial number (6B) + CRC (1B)
if (self.onewire_search(64)):
self.net_rom = self.net_data & 0xffffffffffffffff
self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK, ['ROM: 0x%016x' % self.net_rom]])
self.net_state = "TRANSPORT"
elif (self.net_state == "TRANSPORT"):
# The transport layer is handled in byte sized units
if (self.onewire_collect(8)):
self.put(self.net_beg, self.net_end, self.out_ann, [ANN_NETWORK , ['TRANSPORT: 0x%02x' % self.net_data]])
self.put(self.net_beg, self.net_end, self.out_ann, [ANN_TRANSPORT, ['TRANSPORT: 0x%02x' % self.net_data]])
self.put(self.net_beg, self.net_end, self.out_proto, ['transfer', self.net_data])
# TODO: Sending translort layer data to 1-Wire device models
else:
raise Exception('Invalid net_state: %s' % self.net_state)
# Link/Network layer data collector
def onewire_collect (self, length):
if (self.lnk_event == "DATA BIT"):
# Storing the sampe this sequence begins with
if (self.net_cnt == 1):
self.net_beg = self.samplenum
self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
self.net_cnt = self.net_cnt + 1
# Storing the sampe this sequence ends with
# In case the full length of the sequence is received, return 1
if (self.net_cnt == length):
self.net_end = self.samplenum
self.net_data = self.net_data & ((1<<length)-1)
self.net_cnt = 0
return (1)
else:
return (0)
else:
return (0)
# Link/Network layer search collector
def onewire_search (self, length):
if (self.lnk_event == "DATA BIT"):
# Storing the sampe this sequence begins with
if ((self.net_cnt == 0) and (self.net_search == "P")):
self.net_beg = self.samplenum
# Master receives an original address bit
if (self.net_search == "P"):
self.net_data_p = self.net_data_p & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
self.net_search = "N"
# Master receives a complemented address bit
elif (self.net_search == "N"):
self.net_data_n = self.net_data_n & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
self.net_search = "D"
# Master transmits an address bit
elif (self.net_search == "D"):
self.net_data = self.net_data & ~(1 << self.net_cnt) | (self.lnk_bit << self.net_cnt)
self.net_search = "P"
self.net_cnt = self.net_cnt + 1
# Storing the sampe this sequence ends with
# In case the full length of the sequence is received, return 1
if (self.net_cnt == length):
self.net_end = self.samplenum
self.net_data_p = self.net_data_p & ((1<<length)-1)
self.net_data_n = self.net_data_n & ((1<<length)-1)
self.net_data = self.net_data & ((1<<length)-1)
self.net_search = "P"
self.net_cnt = 0
return (1)
else:
return (0)
else:
return (0)
|