summaryrefslogtreecommitdiff
path: root/decoders/onewire/onewire.py
blob: f69c5955e2e0cc6441cfc79d39205534503612ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
##
## This file is part of the sigrok project.
##
## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA
##

# 1-Wire protocol decoder

import sigrokdecode as srd

# Annotation feed formats
ANN_ASCII = 0
ANN_DEC = 1
ANN_HEX = 2
ANN_OCT = 3
ANN_BITS = 4

class Decoder(srd.Decoder):
    api_version = 1
    id = 'onewire'
    name = '1-Wire'
    longname = ''
    desc = '1-Wire bus and MicroLan'
    license = 'gplv2+'
    inputs = ['logic']
    outputs = ['onewire']
    probes = [
        {'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'},
    ]
    optional_probes = [
        {'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'},
    ]
    options = {
        'overdrive': ['Overdrive', 0],
    }
    annotations = [
        ['ASCII', 'Data bytes as ASCII characters'],
        ['Decimal', 'Databytes as decimal, integer values'],
        ['Hex', 'Data bytes in hex format'],
        ['Octal', 'Data bytes as octal numbers'],
        ['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
    ]

    def putx(self, data):
        self.put(self.startsample, self.samplenum - 1, self.out_ann, data)

    def __init__(self, **kwargs):
        # Common variables
        self.samplenum = 0
        # Link layer variables
        self.lnk_state = 'WAIT FOR EVENT'
        self.lnk_event = 'NONE'
        self.lnk_start = -1
        self.lnk_bit   = -1
        self.lnk_cnt   = 0
        self.lnk_byte  = -1
        # Network layer variables
        self.net_state = 'WAIT FOR EVENT'
        self.net_event = 'NONE'
        self.net_command = -1
        # Transport layer variables
        self.trn_state = 'WAIT FOR EVENT'
        self.trn_event = 'NONE'

        self.data_sample = -1
        self.cur_data_bit = 0
        self.databyte = 0
        self.startsample = -1

    def start(self, metadata):
        self.samplerate = metadata['samplerate']
        self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire')
        self.out_ann = self.add(srd.OUTPUT_ANN, 'onewire')

        # The width of the 1-Wire time base (30us) in number of samples.
        # TODO: optimize this value
        self.time_base = float(self.samplerate) / float(0.000030)

    def report(self):
        pass

    def get_data_sample(self, owr):
        # Skip samples until we're in the middle of the start bit.
        if not self.reached_data_sample():
            return

        self.data_sample = owr

        self.cur_data_bit = 0
        self.databyte = 0
        self.startsample = -1

        self.state = 'GET DATA BITS'

        self.put(self.cycle_start, self.samplenum, self.out_proto,
                 ['STARTBIT', self.startbit])
        self.put(self.cycle_start, self.samplenum, self.out_ann,
                 [ANN_ASCII, ['Start bit', 'Start', 'S']])

    def get_data_bits(self, owr):
        # Skip samples until we're in the middle of the desired data bit.
        if not self.reached_bit(self.cur_data_bit + 1):
            return

        # Save the sample number where the data byte starts.
        if self.startsample == -1:
            self.startsample = self.samplenum

        # Get the next data bit in LSB-first or MSB-first fashion.
        if self.options['bit_order'] == 'lsb-first':
            self.databyte >>= 1
            self.databyte |= \
                (owr << (self.options['num_data_bits'] - 1))
        elif self.options['bit_order'] == 'msb-first':
            self.databyte <<= 1
            self.databyte |= (owr << 0)
        else:
            raise Exception('Invalid bit order value: %s',
                            self.options['bit_order'])

        # Return here, unless we already received all data bits.
        # TODO? Off-by-one?
        if self.cur_data_bit < self.options['num_data_bits'] - 1:
            self.cur_data_bit += 1
            return

        self.state = 'GET PARITY BIT'

        self.put(self.startsample, self.samplenum - 1, self.out_proto,
                 ['DATA', self.databyte])

        self.putx([ANN_ASCII, [chr(self.databyte)]])
        self.putx([ANN_DEC,   [str(self.databyte)]])
        self.putx([ANN_HEX,   [hex(self.databyte),
                               hex(self.databyte)[2:]]])
        self.putx([ANN_OCT,   [oct(self.databyte),
                               oct(self.databyte)[2:]]])
        self.putx([ANN_BITS,  [bin(self.databyte),
                               bin(self.databyte)[2:]]])

    def decode(self, ss, es, data):
        for (self.samplenum, owr) in data:

            # First sample: Save OWR value.
            if self.oldbit == None:
                self.oldbit = owr
                continue

            # Data link layer
            if self.lnk_state == 'WAIT FOR FALLING EDGE':
                # The start of a cycle is a falling edge.
                if (old_owr == 1 and owr == 0):
                    # Save the sample number where the start bit begins.
                    self.lnk_start = self.samplenum
                    # Go to waiting for sample time
                    self.lnk_state = 'WAIT FOR SAMPLE'
            elif self.lnk_state == 'WAIT FOR SAMPLE':
                # Data should be sample one 'time unit' after a falling edge
                if (self.samplenum == self.lnk_start + self.time_base):
                    self.lnk_bit  = owr & 0x1
                    self.lnk_cnt  = self.lnk_cnt + 1
                    self.lnk_byte = (self.lnk_byte << 1) & self.lnk_bit
                    self.lnk_state = 'WAIT FOR RISING EDGE'
            elif self.lnk_state == 'WAIT FOR RISING EDGE':
                # The end of a cycle is a rising edge.
                if (old_owr == 0 and owr == 1):
                    # Data bit cycle length should be between 2*T and 
                    if (self.samplenum < self.lnk_start + 2*self.time_base):
                        if (self.lnk_cnt == 8)
                            self.put(self.startsample, self.samplenum - 1, self.out_proto, ['BYTE', self.lnk_byte])
                            self.lnk_cnt = 0
                    if (self.samplenum == self.lnk_start + 8*self.time_base):
                        self.put(self.startsample, self.samplenum - 1, self.out_proto, ['RESET'])
                    
                    # Go to waiting for sample time
                    self.lnk_state = 'WAIT FOR SAMPLE'

            elif self.state_lnk == 'GET DATA BITS'   : self.get_data_bits(owr)
            else                                     : raise Exception('Invalid state: %d' % self.state)

            # Save current RX/TX values for the next round.
            self.oldbit = owr