1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2011-2012 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# 1-Wire protocol decoder
import sigrokdecode as srd
# Annotation feed formats
ANN_ASCII = 0
ANN_DEC = 1
ANN_HEX = 2
ANN_OCT = 3
ANN_BITS = 4
class Decoder(srd.Decoder):
api_version = 1
id = 'onewire'
name = '1-Wire'
longname = ''
desc = '1-Wire bus and MicroLan'
license = 'gplv2+'
inputs = ['logic']
outputs = ['onewire']
probes = [
{'id': 'owr', 'name': 'OWR', 'desc': '1-Wire bus'},
]
optional_probes = [
{'id': 'pwr', 'name': 'PWR', 'desc': '1-Wire power'},
]
options = {
'overdrive': ['Overdrive', 0],
}
annotations = [
['ASCII', 'Data bytes as ASCII characters'],
['Decimal', 'Databytes as decimal, integer values'],
['Hex', 'Data bytes in hex format'],
['Octal', 'Data bytes as octal numbers'],
['Bits', 'Data bytes in bit notation (sequence of 0/1 digits)'],
]
def putx(self, data):
self.put(self.startsample, self.samplenum - 1, self.out_ann, data)
def __init__(self, **kwargs):
# Common variables
self.samplenum = 0
# Link layer variables
self.lnk_state = 'WAIT FOR NEGEDGE'
self.lnk_event = 'NONE'
self.lnk_start = -1
self.lnk_bit = -1
self.lnk_cnt = 0
self.lnk_byte = -1
# Network layer variables
self.net_state = 'WAIT FOR EVENT'
self.net_event = 'NONE'
self.net_command = -1
# Transport layer variables
self.trn_state = 'WAIT FOR EVENT'
self.trn_event = 'NONE'
self.data_sample = -1
self.cur_data_bit = 0
self.databyte = 0
self.startsample = -1
def start(self, metadata):
self.samplerate = metadata['samplerate']
self.out_proto = self.add(srd.OUTPUT_PROTO, 'onewire')
self.out_ann = self.add(srd.OUTPUT_ANN , 'onewire')
# The width of the 1-Wire time base (30us) in number of samples.
# TODO: optimize this value
self.time_base = float(self.samplerate) / float(0.000030)
def report(self):
pass
def decode(self, ss, es, data):
for (self.samplenum, (owr, pwr)) in data:
# Data link layer
# Clear events.
self.lnk_event = "RESET"
# State machine.
if self.lnk_state == 'WAIT FOR FALLING EDGE':
# The start of a cycle is a falling edge.
if (owr == 0):
# Save the sample number for the falling edge.
self.lnk_fall = self.samplenum
# Go to waiting for sample time
self.lnk_state = 'WAIT FOR DATA SAMPLE'
elif self.lnk_state == 'WAIT FOR DATA SAMPLE':
# Data should be sample one 'time unit' after a falling edge
if (self.samplenum - self.lnk_fall == 1*self.time_base):
self.lnk_bit = owr & 0x1
self.lnk_event = "DATA BIT"
if (self.lnk_bit) : self.lnk_state = 'WAIT FOR FALLING EDGE'
else : self.lnk_state = 'WAIT FOR RISING EDGE'
elif self.lnk_state == 'WAIT FOR RISING EDGE':
# The end of a cycle is a rising edge.
if (owr == 1):
# A reset cycle is longer than 8T
if (self.samplenum - self.lnk_fall > 8*self.time_base):
# Save the sample number for the falling edge.
self.lnk_rise = self.samplenum
# Send a reset event to the next protocol layer
self.lnk_event = "RESET"
self.lnk_state = "WAIT FOR PRESENCE DETECT"
elif self.lnk_state == 'WAIT FOR PRESENCE DETECT':
# Data should be sample one 'time unit' after a falling edge
if (self.samplenum - self.lnk_rise == 2.5*self.time_base):
self.lnk_bit = owr & 0x1
self.lnk_event = "PRESENCE DETECT"
if (self.lnk_bit) : self.lnk_state = 'WAIT FOR FALLING EDGE'
else : self.lnk_state = 'WAIT FOR RISING EDGE'
else:
raise Exception('Invalid lnk_state: %s' % self.lnk_state)
# Network layer
# Clear events.
self.net_event = "RESET"
# State machine.
if (self.lnk_event == "RESET"):
self.net_state = "WAIT FOR COMMAND"
self.net_cnt = 0
self.net_cmd = 0
elif (self.lnk_event == "DATA BIT"):
if (self.net_state == "WAIT FOR COMMAND"):
self.net_cnt = self.net_cnt + 1
self.net_cmd = (self.net_cmd << 1) & self.lnk_bit
if (self.lnk_cnt == 8):
self.put(self.startsample, self.samplenum,
self.out_proto, ['LNK: BYTE', self.lnk_byte])
self.put(self.startsample, self.samplenum, self.out_ann,
[ANN_DEC, ['LNK: BYTE: ' + self.lnk_byte]])
if (self.net_cmd == 0x33):
# READ ROM
break
elif (self.net_cmd == 0x0f):
# READ ROM
break
elif (self.net_cmd == 0xcc):
# SKIP ROM
break
elif (self.net_cmd == 0x55):
# MATCH ROM
break
elif (self.net_cmd == 0xf0):
# SEARCH ROM
break
elif (self.net_cmd == 0x3c):
# OVERDRIVE SKIP ROM
break
elif (self.net_cmd == 0x69):
# OVERDRIVE MATCH ROM
break
self.lnk_cnt = 0
if (self.net_state == "WAIT FOR ROM"):
#
break
else:
raise Exception('Invalid net_state: %s' % self.net_state)
elif not (self.lnk_event == "NONE"):
raise Exception('Invalid net_event: %s' % self.net_event)
# if (self.samplenum == self.lnk_start + 8*self.time_base):
# self.put(self.startsample, self.samplenum - 1, self.out_proto, ['RESET'])
|