1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2015 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>:
- 'NEW STATE': <pdata> is the new state of the JTAG state machine.
Valid values: 'TEST-LOGIC-RESET', 'RUN-TEST/IDLE', 'SELECT-DR-SCAN',
'CAPTURE-DR', 'SHIFT-DR', 'EXIT1-DR', 'PAUSE-DR', 'EXIT2-DR', 'UPDATE-DR',
'SELECT-IR-SCAN', 'CAPTURE-IR', 'SHIFT-IR', 'EXIT1-IR', 'PAUSE-IR',
'EXIT2-IR', 'UPDATE-IR'.
- 'IR TDI': Bitstring that was clocked into the IR register.
- 'IR TDO': Bitstring that was clocked out of the IR register.
- 'DR TDI': Bitstring that was clocked into the DR register.
- 'DR TDO': Bitstring that was clocked out of the DR register.
All bitstrings are a list consisting of two items. The first is a sequence
of '1' and '0' characters (the right-most character is the LSB. Example:
'01110001', where 1 is the LSB). The second item is a list of ss/es values
for each bit that is in the bitstring.
'''
jtag_states = [
# Intro "tree"
'TEST-LOGIC-RESET', 'RUN-TEST/IDLE',
# DR "tree"
'SELECT-DR-SCAN', 'CAPTURE-DR', 'UPDATE-DR', 'PAUSE-DR',
'SHIFT-DR', 'EXIT1-DR', 'EXIT2-DR',
# IR "tree"
'SELECT-IR-SCAN', 'CAPTURE-IR', 'UPDATE-IR', 'PAUSE-IR',
'SHIFT-IR', 'EXIT1-IR', 'EXIT2-IR',
]
class Decoder(srd.Decoder):
api_version = 2
id = 'jtag'
name = 'JTAG'
longname = 'Joint Test Action Group (IEEE 1149.1)'
desc = 'Protocol for testing, debugging, and flashing ICs.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['jtag']
channels = (
{'id': 'tdi', 'name': 'TDI', 'desc': 'Test data input'},
{'id': 'tdo', 'name': 'TDO', 'desc': 'Test data output'},
{'id': 'tck', 'name': 'TCK', 'desc': 'Test clock'},
{'id': 'tms', 'name': 'TMS', 'desc': 'Test mode select'},
)
optional_channels = (
{'id': 'trst', 'name': 'TRST#', 'desc': 'Test reset'},
{'id': 'srst', 'name': 'SRST#', 'desc': 'System reset'},
{'id': 'rtck', 'name': 'RTCK', 'desc': 'Return clock signal'},
)
annotations = tuple([tuple([s.lower(), s]) for s in jtag_states]) + ( \
('bit-tdi', 'Bit (TDI)'),
('bit-tdo', 'Bit (TDO)'),
('bitstring-tdi', 'Bitstring (TDI)'),
('bitstring-tdo', 'Bitstring (TDO)'),
)
annotation_rows = (
('bits-tdi', 'Bits (TDI)', (16,)),
('bits-tdo', 'Bits (TDO)', (17,)),
('bitstrings-tdi', 'Bitstring (TDI)', (18,)),
('bitstrings-tdo', 'Bitstring (TDO)', (19,)),
('states', 'States', tuple(range(15 + 1))),
)
def __init__(self):
# self.state = 'TEST-LOGIC-RESET'
self.state = 'RUN-TEST/IDLE'
self.oldstate = None
self.oldpins = (-1, -1, -1, -1)
self.oldtck = -1
self.bits_tdi = []
self.bits_tdo = []
self.bits_samplenums_tdi = []
self.bits_samplenums_tdo = []
self.samplenum = 0
self.ss_item = self.es_item = None
self.ss_bitstring = self.es_bitstring = None
self.saved_item = None
self.first = True
self.first_bit = True
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
def putx(self, data):
self.put(self.ss_item, self.es_item, self.out_ann, data)
def putp(self, data):
self.put(self.ss_item, self.es_item, self.out_python, data)
def putx_bs(self, data):
self.put(self.ss_bitstring, self.es_bitstring, self.out_ann, data)
def putp_bs(self, data):
self.put(self.ss_bitstring, self.es_bitstring, self.out_python, data)
def advance_state_machine(self, tms):
self.oldstate = self.state
# Intro "tree"
if self.state == 'TEST-LOGIC-RESET':
self.state = 'TEST-LOGIC-RESET' if (tms) else 'RUN-TEST/IDLE'
elif self.state == 'RUN-TEST/IDLE':
self.state = 'SELECT-DR-SCAN' if (tms) else 'RUN-TEST/IDLE'
# DR "tree"
elif self.state == 'SELECT-DR-SCAN':
self.state = 'SELECT-IR-SCAN' if (tms) else 'CAPTURE-DR'
elif self.state == 'CAPTURE-DR':
self.state = 'EXIT1-DR' if (tms) else 'SHIFT-DR'
elif self.state == 'SHIFT-DR':
self.state = 'EXIT1-DR' if (tms) else 'SHIFT-DR'
elif self.state == 'EXIT1-DR':
self.state = 'UPDATE-DR' if (tms) else 'PAUSE-DR'
elif self.state == 'PAUSE-DR':
self.state = 'EXIT2-DR' if (tms) else 'PAUSE-DR'
elif self.state == 'EXIT2-DR':
self.state = 'UPDATE-DR' if (tms) else 'SHIFT-DR'
elif self.state == 'UPDATE-DR':
self.state = 'SELECT-DR-SCAN' if (tms) else 'RUN-TEST/IDLE'
# IR "tree"
elif self.state == 'SELECT-IR-SCAN':
self.state = 'TEST-LOGIC-RESET' if (tms) else 'CAPTURE-IR'
elif self.state == 'CAPTURE-IR':
self.state = 'EXIT1-IR' if (tms) else 'SHIFT-IR'
elif self.state == 'SHIFT-IR':
self.state = 'EXIT1-IR' if (tms) else 'SHIFT-IR'
elif self.state == 'EXIT1-IR':
self.state = 'UPDATE-IR' if (tms) else 'PAUSE-IR'
elif self.state == 'PAUSE-IR':
self.state = 'EXIT2-IR' if (tms) else 'PAUSE-IR'
elif self.state == 'EXIT2-IR':
self.state = 'UPDATE-IR' if (tms) else 'SHIFT-IR'
elif self.state == 'UPDATE-IR':
self.state = 'SELECT-DR-SCAN' if (tms) else 'RUN-TEST/IDLE'
def handle_rising_tck_edge(self, tdi, tdo, tck, tms):
# Rising TCK edges always advance the state machine.
self.advance_state_machine(tms)
if self.first:
# Save the start sample and item for later (no output yet).
self.ss_item = self.samplenum
self.first = False
else:
# Output the saved item (from the last CLK edge to the current).
self.es_item = self.samplenum
# Output the old state (from last rising TCK edge to current one).
self.putx([jtag_states.index(self.oldstate), [self.oldstate]])
self.putp(['NEW STATE', self.state])
# Upon SHIFT-IR/SHIFT-DR collect the current TDI/TDO values.
if self.state.startswith('SHIFT-'):
if self.first_bit:
self.ss_bitstring = self.samplenum
self.first_bit = False
else:
self.putx([16, [str(self.bits_tdi[0])]])
self.putx([17, [str(self.bits_tdo[0])]])
# Use self.samplenum as ES of the previous bit.
self.bits_samplenums_tdi[0][1] = self.samplenum
self.bits_samplenums_tdo[0][1] = self.samplenum
self.bits_tdi.insert(0, tdi)
self.bits_tdo.insert(0, tdo)
# Use self.samplenum as SS of the current bit.
self.bits_samplenums_tdi.insert(0, [self.samplenum, -1])
self.bits_samplenums_tdo.insert(0, [self.samplenum, -1])
# Output all TDI/TDO bits if we just switched from SHIFT-* to EXIT1-*.
if self.oldstate.startswith('SHIFT-') and \
self.state.startswith('EXIT1-'):
self.es_bitstring = self.samplenum
t = self.state[-2:] + ' TDI'
b = ''.join(map(str, self.bits_tdi))
h = ' (0x%x' % int('0b' + b, 2) + ')'
s = t + ': ' + b + h + ', ' + str(len(self.bits_tdi)) + ' bits'
self.putx_bs([18, [s]])
self.bits_samplenums_tdi[0][1] = self.samplenum # ES of last bit.
self.putp_bs([t, [b, self.bits_samplenums_tdi]])
self.putx([16, [str(self.bits_tdi[0])]]) # Last bit.
self.bits_tdi = []
self.bits_samplenums_tdi = []
t = self.state[-2:] + ' TDO'
b = ''.join(map(str, self.bits_tdo))
h = ' (0x%x' % int('0b' + b, 2) + ')'
s = t + ': ' + b + h + ', ' + str(len(self.bits_tdo)) + ' bits'
self.putx_bs([19, [s]])
self.bits_samplenums_tdo[0][1] = self.samplenum # ES of last bit.
self.putp_bs([t, [b, self.bits_samplenums_tdo]])
self.putx([17, [str(self.bits_tdo[0])]]) # Last bit.
self.bits_tdo = []
self.bits_samplenums_tdo = []
self.first_bit = True
self.ss_bitstring = self.samplenum
self.ss_item = self.samplenum
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
# If none of the pins changed, there's nothing to do.
if self.oldpins == pins:
continue
# Store current pin values for the next round.
self.oldpins = pins
# Get individual pin values into local variables.
# Unused channels will have a value of > 1.
(tdi, tdo, tck, tms, trst, srst, rtck) = pins
# We only care about TCK edges (either rising or falling).
if (self.oldtck == tck):
continue
# Store start/end sample for later usage.
self.ss, self.es = ss, es
if (self.oldtck == 0 and tck == 1):
self.handle_rising_tck_edge(tdi, tdo, tck, tms)
self.oldtck = tck
|