1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Sebastien Bourdelin <sebastien.bourdelin@savoirfairelinux.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
# Helper dictionary for edge detection.
edge_detector = {
'rising': lambda x, y: bool(not x and y),
'falling': lambda x, y: bool(x and not y),
'both': lambda x, y: bool(x ^ y),
}
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'jitter'
name = 'Jitter'
longname = 'Timing jitter calculation'
desc = 'Retrieves the timing jitter between two digital signals.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['jitter']
tags = ['Clock/timing', 'Util']
channels = (
{'id': 'clk', 'name': 'Clock', 'desc': 'Clock reference channel'},
{'id': 'sig', 'name': 'Resulting signal', 'desc': 'Resulting signal controlled by the clock'},
)
options = (
{'id': 'clk_polarity', 'desc': 'Clock edge polarity',
'default': 'rising', 'values': ('rising', 'falling', 'both')},
{'id': 'sig_polarity', 'desc': 'Resulting signal edge polarity',
'default': 'rising', 'values': ('rising', 'falling', 'both')},
)
annotations = (
('jitter', 'Jitter value'),
('clk_missed', 'Clock missed'),
('sig_missed', 'Signal missed'),
)
annotation_rows = (
('jitter', 'Jitter values', (0,)),
('clk_missed', 'Clock missed', (1,)),
('sig_missed', 'Signal missed', (2,)),
)
binary = (
('ascii-float', 'Jitter values as newline-separated ASCII floats'),
)
def __init__(self):
self.reset()
def reset(self):
self.state = 'CLK'
self.samplerate = None
self.oldclk, self.oldsig = 0, 0
self.clk_start = None
self.sig_start = None
self.clk_missed = 0
self.sig_missed = 0
def start(self):
self.clk_edge = edge_detector[self.options['clk_polarity']]
self.sig_edge = edge_detector[self.options['sig_polarity']]
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_clk_missed = self.register(srd.OUTPUT_META,
meta=(int, 'Clock missed', 'Clock transition missed'))
self.out_sig_missed = self.register(srd.OUTPUT_META,
meta=(int, 'Signal missed', 'Resulting signal transition missed'))
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# Helper function for jitter time annotations.
def putx(self, delta):
# Adjust granularity.
if delta == 0 or delta >= 1:
delta_s = '%.1fs' % (delta)
elif delta <= 1e-12:
delta_s = '%.1ffs' % (delta * 1e15)
elif delta <= 1e-9:
delta_s = '%.1fps' % (delta * 1e12)
elif delta <= 1e-6:
delta_s = '%.1fns' % (delta * 1e9)
elif delta <= 1e-3:
delta_s = '%.1fμs' % (delta * 1e6)
else:
delta_s = '%.1fms' % (delta * 1e3)
self.put(self.clk_start, self.sig_start, self.out_ann, [0, [delta_s]])
# Helper function for ASCII float jitter values (one value per line).
def putb(self, delta):
if delta is None:
return
# Format the delta to an ASCII float value terminated by a newline.
x = str(delta) + '\n'
self.put(self.clk_start, self.sig_start, self.out_binary,
[0, x.encode('UTF-8')])
# Helper function for missed clock and signal annotations.
def putm(self, data):
self.put(self.samplenum, self.samplenum, self.out_ann, data)
def handle_clk(self, clk, sig):
if self.clk_start == self.samplenum:
# Clock transition already treated.
# We have done everything we can with this sample.
return True
if self.clk_edge(self.oldclk, clk):
# Clock edge found.
# We note the sample and move to the next state.
self.clk_start = self.samplenum
self.state = 'SIG'
return False
else:
if self.sig_start is not None \
and self.sig_start != self.samplenum \
and self.sig_edge(self.oldsig, sig):
# If any transition in the resulting signal
# occurs while we are waiting for a clock,
# we increase the missed signal counter.
self.sig_missed += 1
self.put(self.samplenum, self.samplenum, self.out_sig_missed, self.sig_missed)
self.putm([2, ['Missed signal', 'MS']])
# No clock edge found, we have done everything we
# can with this sample.
return True
def handle_sig(self, clk, sig):
if self.sig_start == self.samplenum:
# Signal transition already treated.
# We have done everything we can with this sample.
return True
if self.sig_edge(self.oldsig, sig):
# Signal edge found.
# We note the sample, calculate the jitter
# and move to the next state.
self.sig_start = self.samplenum
self.state = 'CLK'
# Calculate and report the timing jitter.
delta = (self.sig_start - self.clk_start) / self.samplerate
self.putx(delta)
self.putb(delta)
return False
else:
if self.clk_start != self.samplenum \
and self.clk_edge(self.oldclk, clk):
# If any transition in the clock signal
# occurs while we are waiting for a resulting
# signal, we increase the missed clock counter.
self.clk_missed += 1
self.put(self.samplenum, self.samplenum, self.out_clk_missed, self.clk_missed)
self.putm([1, ['Missed clock', 'MC']])
# No resulting signal edge found, we have done
# everything we can with this sample.
return True
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
while True:
# Wait for a transition on CLK and/or SIG.
clk, sig = self.wait([{0: 'e'}, {1: 'e'}])
# State machine:
# For each sample we can move 2 steps forward in the state machine.
while True:
# Clock state has the lead.
if self.state == 'CLK':
if self.handle_clk(clk, sig):
break
if self.state == 'SIG':
if self.handle_sig(clk, sig):
break
# Save current CLK/SIG values for the next round.
self.oldclk, self.oldsig = clk, sig
|