1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Gump Yang <gump.yang@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from .lists import *
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'ir_nec'
name = 'IR NEC'
longname = 'IR NEC'
desc = 'NEC infrared remote control protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['IR']
channels = (
{'id': 'ir', 'name': 'IR', 'desc': 'Data line'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
'values': ('active-low', 'active-high')},
{'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0},
)
annotations = (
('bit', 'Bit'),
('agc-pulse', 'AGC pulse'),
('longpause', 'Long pause'),
('shortpause', 'Short pause'),
('stop-bit', 'Stop bit'),
('leader-code', 'Leader code'),
('addr', 'Address'),
('addr-inv', 'Address#'),
('cmd', 'Command'),
('cmd-inv', 'Command#'),
('repeat-code', 'Repeat code'),
('remote', 'Remote'),
('warning', 'Warning'),
)
annotation_rows = (
('bits', 'Bits', (0, 1, 2, 3, 4)),
('fields', 'Fields', (5, 6, 7, 8, 9, 10)),
('remote-vals', 'Remote', (11,)),
('warnings', 'Warnings', (12,)),
)
def putx(self, data):
self.put(self.ss_start, self.samplenum, self.out_ann, data)
def putb(self, data):
self.put(self.ss_bit, self.samplenum, self.out_ann, data)
def putd(self, data):
name = self.state.title()
d = {'ADDRESS': 6, 'ADDRESS#': 7, 'COMMAND': 8, 'COMMAND#': 9}
s = {'ADDRESS': ['ADDR', 'A'], 'ADDRESS#': ['ADDR#', 'A#'],
'COMMAND': ['CMD', 'C'], 'COMMAND#': ['CMD#', 'C#']}
self.putx([d[self.state], ['%s: 0x%02X' % (name, data),
'%s: 0x%02X' % (s[self.state][0], data),
'%s: 0x%02X' % (s[self.state][1], data), s[self.state][1]]])
def putstop(self, ss):
self.put(ss, ss + self.stop, self.out_ann,
[4, ['Stop bit', 'Stop', 'St', 'S']])
def putpause(self, p):
self.put(self.ss_start, self.ss_other_edge, self.out_ann,
[1, ['AGC pulse', 'AGC', 'A']])
idx = 2 if p == 'Long' else 3
self.put(self.ss_other_edge, self.samplenum, self.out_ann,
[idx, [p + ' pause', '%s-pause' % p[0], '%sP' % p[0], 'P']])
def putremote(self):
dev = address.get(self.addr, 'Unknown device')
buttons = command.get(self.addr, None)
if buttons is None:
btn = ['Unknown', 'Unk']
else:
btn = buttons.get(self.cmd, ['Unknown', 'Unk'])
self.put(self.ss_remote, self.ss_bit + self.stop, self.out_ann,
[11, ['%s: %s' % (dev, btn[0]), '%s: %s' % (dev, btn[1]),
'%s' % btn[1]]])
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.ss_bit = self.ss_start = self.ss_other_edge = self.ss_remote = 0
self.data = self.count = self.active = None
self.addr = self.cmd = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
self.tolerance = 0.05 # +/-5%
self.lc = int(self.samplerate * 0.0135) - 1 # 13.5ms
self.rc = int(self.samplerate * 0.01125) - 1 # 11.25ms
self.dazero = int(self.samplerate * 0.001125) - 1 # 1.125ms
self.daone = int(self.samplerate * 0.00225) - 1 # 2.25ms
self.stop = int(self.samplerate * 0.000652) - 1 # 0.652ms
def compare_with_tolerance(self, measured, base):
return (measured >= base * (1 - self.tolerance)
and measured <= base * (1 + self.tolerance))
def handle_bit(self, tick):
ret = None
if self.compare_with_tolerance(tick, self.dazero):
ret = 0
elif self.compare_with_tolerance(tick, self.daone):
ret = 1
if ret in (0, 1):
self.putb([0, ['%d' % ret]])
self.data |= (ret << self.count) # LSB-first
self.count = self.count + 1
self.ss_bit = self.samplenum
def data_ok(self):
ret, name = (self.data >> 8) & (self.data & 0xff), self.state.title()
if self.count == 8:
if self.state == 'ADDRESS':
self.addr = self.data
if self.state == 'COMMAND':
self.cmd = self.data
self.putd(self.data)
self.ss_start = self.samplenum
return True
if ret == 0:
self.putd(self.data >> 8)
else:
self.putx([12, ['%s error: 0x%04X' % (name, self.data)]])
self.data = self.count = 0
self.ss_bit = self.ss_start = self.samplenum
return ret == 0
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
cd_count = None
if self.options['cd_freq']:
cd_count = int(self.samplerate / self.options['cd_freq']) + 1
prev_ir = None
self.active = 0 if self.options['polarity'] == 'active-low' else 1
while True:
# Detect changes in the presence of an active input signal.
# The decoder can either be fed an already filtered RX signal
# or optionally can detect the presence of a carrier. Periods
# of inactivity (signal changes slower than the carrier freq,
# if specified) pass on the most recently sampled level. This
# approach works for filtered and unfiltered input alike, and
# only slightly extends the active phase of input signals with
# carriers included by one period of the carrier frequency.
# IR based communication protocols can cope with this slight
# inaccuracy just fine by design. Enabling carrier detection
# on already filtered signals will keep the length of their
# active period, but will shift their signal changes by one
# carrier period before they get passed to decoding logic.
if cd_count:
(cur_ir,) = self.wait([{0: 'e'}, {'skip': cd_count}])
if self.matched[0]:
cur_ir = self.active
if cur_ir == prev_ir:
continue
prev_ir = cur_ir
self.ir = cur_ir
else:
(self.ir,) = self.wait({0: 'e'})
if self.ir != self.active:
# Save the non-active edge, then wait for the next edge.
self.ss_other_edge = self.samplenum
continue
b = self.samplenum - self.ss_bit
# State machine.
if self.state == 'IDLE':
if self.compare_with_tolerance(b, self.lc):
self.putpause('Long')
self.putx([5, ['Leader code', 'Leader', 'LC', 'L']])
self.ss_remote = self.ss_start
self.data = self.count = 0
self.state = 'ADDRESS'
elif self.compare_with_tolerance(b, self.rc):
self.putpause('Short')
self.putstop(self.samplenum)
self.samplenum += self.stop
self.putx([10, ['Repeat code', 'Repeat', 'RC', 'R']])
self.data = self.count = 0
self.ss_bit = self.ss_start = self.samplenum
elif self.state == 'ADDRESS':
self.handle_bit(b)
if self.count == 8:
self.state = 'ADDRESS#' if self.data_ok() else 'IDLE'
elif self.state == 'ADDRESS#':
self.handle_bit(b)
if self.count == 16:
self.state = 'COMMAND' if self.data_ok() else 'IDLE'
elif self.state == 'COMMAND':
self.handle_bit(b)
if self.count == 8:
self.state = 'COMMAND#' if self.data_ok() else 'IDLE'
elif self.state == 'COMMAND#':
self.handle_bit(b)
if self.count == 16:
self.state = 'STOP' if self.data_ok() else 'IDLE'
elif self.state == 'STOP':
self.putstop(self.ss_bit)
self.putremote()
self.ss_bit = self.ss_start = self.samplenum
self.state = 'IDLE'
|