summaryrefslogtreecommitdiff
path: root/decoders/i2c/pd.py
blob: 36c8d1eb2df48f4b8cfd6f22142056ad548cb930 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.

import sigrokdecode as srd

'''
OUTPUT_PYTHON format:

Packet:
[<ptype>, <pdata>]

<ptype>:
 - 'START' (START condition)
 - 'START REPEAT' (Repeated START condition)
 - 'ADDRESS READ' (Slave address, read)
 - 'ADDRESS WRITE' (Slave address, write)
 - 'DATA READ' (Data, read)
 - 'DATA WRITE' (Data, write)
 - 'STOP' (STOP condition)
 - 'ACK' (ACK bit)
 - 'NACK' (NACK bit)
 - 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)

<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
For example, a slave address field could be 0x51 (instead of 0xa2).
For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
'''

# CMD: [annotation-type-index, long annotation, short annotation]
proto = {
    'START':           [0, 'Start',         'S'],
    'START REPEAT':    [1, 'Start repeat',  'Sr'],
    'STOP':            [2, 'Stop',          'P'],
    'ACK':             [3, 'ACK',           'A'],
    'NACK':            [4, 'NACK',          'N'],
    'BIT':             [5, 'Bit',           'B'],
    'ADDRESS READ':    [6, 'Address read',  'AR'],
    'ADDRESS WRITE':   [7, 'Address write', 'AW'],
    'DATA READ':       [8, 'Data read',     'DR'],
    'DATA WRITE':      [9, 'Data write',    'DW'],
}

class Decoder(srd.Decoder):
    api_version = 3
    id = 'i2c'
    name = 'I²C'
    longname = 'Inter-Integrated Circuit'
    desc = 'Two-wire, multi-master, serial bus.'
    license = 'gplv2+'
    inputs = ['logic']
    outputs = ['i2c']
    tags = ['Embedded/industrial']
    channels = (
        {'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
        {'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
    )
    options = (
        {'id': 'address_format', 'desc': 'Displayed slave address format',
            'default': 'shifted', 'values': ('shifted', 'unshifted')},
    )
    annotations = (
        ('start', 'Start condition'),
        ('repeat-start', 'Repeat start condition'),
        ('stop', 'Stop condition'),
        ('ack', 'ACK'),
        ('nack', 'NACK'),
        ('bit', 'Data/address bit'),
        ('address-read', 'Address read'),
        ('address-write', 'Address write'),
        ('data-read', 'Data read'),
        ('data-write', 'Data write'),
        ('warning', 'Warning'),
    )
    annotation_rows = (
        ('bits', 'Bits', (5,)),
        ('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
        ('warnings', 'Warnings', (10,)),
    )
    binary = (
        ('address-read', 'Address read'),
        ('address-write', 'Address write'),
        ('data-read', 'Data read'),
        ('data-write', 'Data write'),
    )

    def __init__(self):
        self.reset()

    def reset(self):
        self.samplerate = None
        self.ss = self.es = self.ss_byte = -1
        self.bitcount = 0
        self.databyte = 0
        self.is_write = None
        self.rem_addr_bytes = None
        self.is_repeat_start = False
        self.state = 'FIND START'
        self.pdu_start = None
        self.pdu_bits = 0
        self.data_bits = []

    def metadata(self, key, value):
        if key == srd.SRD_CONF_SAMPLERATE:
            self.samplerate = value

    def start(self):
        self.out_python = self.register(srd.OUTPUT_PYTHON)
        self.out_ann = self.register(srd.OUTPUT_ANN)
        self.out_binary = self.register(srd.OUTPUT_BINARY)
        self.out_bitrate = self.register(srd.OUTPUT_META,
                meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))

    def putx(self, data):
        self.put(self.ss, self.es, self.out_ann, data)

    def putp(self, data):
        self.put(self.ss, self.es, self.out_python, data)

    def putb(self, data):
        self.put(self.ss, self.es, self.out_binary, data)

    def handle_start(self, pins):
        self.ss, self.es = self.samplenum, self.samplenum
        self.pdu_start = self.samplenum
        self.pdu_bits = 0
        cmd = 'START REPEAT' if self.is_repeat_start else 'START'
        self.putp([cmd, None])
        self.putx([proto[cmd][0], proto[cmd][1:]])
        self.state = 'FIND ADDRESS'
        self.bitcount = self.databyte = 0
        self.is_repeat_start = True
        self.is_write = None
        self.rem_addr_bytes = None
        self.data_bits = []

    # Gather 8 bits of data plus the ACK/NACK bit.
    def handle_address_or_data(self, pins):
        scl, sda = pins
        self.pdu_bits += 1

        # Address and data are transmitted MSB-first.
        self.databyte <<= 1
        self.databyte |= sda

        # Remember the start of the first data/address bit.
        if self.bitcount == 0:
            self.ss_byte = self.samplenum

        # Store individual bits and their start/end samplenumbers.
        # In the list, index 0 represents the LSB (I²C transmits MSB-first).
        self.data_bits.insert(0, [sda, self.samplenum, self.samplenum])
        if self.bitcount > 0:
            self.data_bits[1][2] = self.samplenum
        if self.bitcount == 7:
            self.bitwidth = self.data_bits[1][2] - self.data_bits[2][2]
            self.data_bits[0][2] += self.bitwidth

        # Return if we haven't collected all 8 + 1 bits, yet.
        if self.bitcount < 7:
            self.bitcount += 1
            return

        d = self.databyte
        if self.state == 'FIND ADDRESS':
            # The READ/WRITE bit is only in the first address byte, not
            # in data bytes. Address bit pattern 0b1111_0xxx means that
            # this is a 10bit slave address, another byte follows. Get
            # the R/W direction and the address bytes count from the
            # first byte in the I2C transfer.
            addr_byte = d
            if self.rem_addr_bytes is None:
                if (addr_byte & 0xf8) == 0xf0:
                    self.rem_addr_bytes = 2
                    self.slave_addr_7 = None
                    self.slave_addr_10 = addr_byte & 0x06
                    self.slave_addr_10 <<= 7
                else:
                    self.rem_addr_bytes = 1
                    self.slave_addr_7 = addr_byte >> 1
                    self.slave_addr_10 = None
            is_seven = self.slave_addr_7 is not None
            if self.is_write is None:
                read_bit = bool(addr_byte & 1)
                shift_seven = self.options['address_format'] == 'shifted'
                if is_seven and shift_seven:
                    d = d >> 1
                self.is_write = False if read_bit else True
            else:
                self.slave_addr_10 |= addr_byte

        bin_class = -1
        if self.state == 'FIND ADDRESS' and self.is_write:
            cmd = 'ADDRESS WRITE'
            bin_class = 1
        elif self.state == 'FIND ADDRESS' and not self.is_write:
            cmd = 'ADDRESS READ'
            bin_class = 0
        elif self.state == 'FIND DATA' and self.is_write:
            cmd = 'DATA WRITE'
            bin_class = 3
        elif self.state == 'FIND DATA' and not self.is_write:
            cmd = 'DATA READ'
            bin_class = 2

        self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth

        self.putp(['BITS', self.data_bits])
        self.putp([cmd, d])

        self.putb([bin_class, bytes([d])])

        for bit in self.data_bits:
            self.put(bit[1], bit[2], self.out_ann, [5, ['%d' % bit[0]]])

        if cmd.startswith('ADDRESS') and is_seven:
            self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
            w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R']
            self.putx([proto[cmd][0], w])
            self.ss, self.es = self.ss_byte, self.samplenum

        self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
                   '%s: %02X' % (proto[cmd][2], d), '%02X' % d]])

        # Done with this packet.
        self.bitcount = self.databyte = 0
        self.data_bits = []
        self.state = 'FIND ACK'

    def get_ack(self, pins):
        scl, sda = pins
        self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
        cmd = 'NACK' if (sda == 1) else 'ACK'
        self.putp([cmd, None])
        self.putx([proto[cmd][0], proto[cmd][1:]])
        # Slave addresses can span one or two bytes, before data bytes
        # follow. There can be an arbitrary number of data bytes. Stick
        # with getting more address bytes if applicable, or enter or
        # remain in the data phase of the transfer otherwise.
        if self.rem_addr_bytes:
            self.rem_addr_bytes -= 1
        if self.rem_addr_bytes:
            self.state = 'FIND ADDRESS'
        else:
            self.state = 'FIND DATA'

    def handle_stop(self, pins):
        # Meta bitrate
        if self.samplerate:
            elapsed = 1 / float(self.samplerate) * (self.samplenum - self.pdu_start + 1)
            bitrate = int(1 / elapsed * self.pdu_bits)
            self.put(self.ss_byte, self.samplenum, self.out_bitrate, bitrate)

        cmd = 'STOP'
        self.ss, self.es = self.samplenum, self.samplenum
        self.putp([cmd, None])
        self.putx([proto[cmd][0], proto[cmd][1:]])
        self.state = 'FIND START'
        self.is_repeat_start = False
        self.is_write = None
        self.data_bits = []

    def decode(self):
        while True:
            # State machine.
            if self.state == 'FIND START':
                # Wait for a START condition (S): SCL = high, SDA = falling.
                self.handle_start(self.wait({0: 'h', 1: 'f'}))
            elif self.state == 'FIND ADDRESS':
                # Wait for a data bit: SCL = rising.
                self.handle_address_or_data(self.wait({0: 'r'}))
            elif self.state == 'FIND DATA':
                # Wait for any of the following conditions (or combinations):
                #  a) Data sampling of receiver: SCL = rising, and/or
                #  b) START condition (S): SCL = high, SDA = falling, and/or
                #  c) STOP condition (P): SCL = high, SDA = rising
                pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])

                # Check which of the condition(s) matched and handle them.
                if self.matched[0]:
                    self.handle_address_or_data(pins)
                elif self.matched[1]:
                    self.handle_start(pins)
                elif self.matched[2]:
                    self.handle_stop(pins)
            elif self.state == 'FIND ACK':
                # Wait for a data/ack bit: SCL = rising.
                self.get_ack(self.wait({0: 'r'}))