1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2010-2016 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
from common.srdhelper import bitpack_msb
import sigrokdecode as srd
'''
OUTPUT_PYTHON format:
Packet:
[<ptype>, <pdata>]
<ptype>:
- 'START' (START condition)
- 'START REPEAT' (Repeated START condition)
- 'ADDRESS READ' (Slave address, read)
- 'ADDRESS WRITE' (Slave address, write)
- 'DATA READ' (Data, read)
- 'DATA WRITE' (Data, write)
- 'STOP' (STOP condition)
- 'ACK' (ACK bit)
- 'NACK' (NACK bit)
- 'BITS' (<pdata>: list of data/address bits and their ss/es numbers)
<pdata> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
For example, a slave address field could be 0x51 (instead of 0xa2).
For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <pdata> is None.
'''
# Meaning of table items:
# command -> [annotation class, annotation text in order of decreasing length]
proto = {
'START': [0, 'Start', 'S'],
'START REPEAT': [1, 'Start repeat', 'Sr'],
'STOP': [2, 'Stop', 'P'],
'ACK': [3, 'ACK', 'A'],
'NACK': [4, 'NACK', 'N'],
'BIT': [5, '{b:1d}'],
'ADDRESS READ': [6, 'Address read: {b:02X}', 'AR: {b:02X}', '{b:02X}'],
'ADDRESS WRITE': [7, 'Address write: {b:02X}', 'AW: {b:02X}', '{b:02X}'],
'DATA READ': [8, 'Data read: {b:02X}', 'DR: {b:02X}', '{b:02X}'],
'DATA WRITE': [9, 'Data write: {b:02X}', 'DW: {b:02X}', '{b:02X}'],
}
class Decoder(srd.Decoder):
api_version = 3
id = 'i2c'
name = 'I²C'
longname = 'Inter-Integrated Circuit'
desc = 'Two-wire, multi-master, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['i2c']
tags = ['Embedded/industrial']
channels = (
{'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
{'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
)
options = (
{'id': 'address_format', 'desc': 'Displayed slave address format',
'default': 'shifted', 'values': ('shifted', 'unshifted')},
)
annotations = (
('start', 'Start condition'),
('repeat-start', 'Repeat start condition'),
('stop', 'Stop condition'),
('ack', 'ACK'),
('nack', 'NACK'),
('bit', 'Data/address bit'),
('address-read', 'Address read'),
('address-write', 'Address write'),
('data-read', 'Data read'),
('data-write', 'Data write'),
('warning', 'Warning'),
)
annotation_rows = (
('bits', 'Bits', (5,)),
('addr-data', 'Address/data', (0, 1, 2, 3, 4, 6, 7, 8, 9)),
('warnings', 'Warnings', (10,)),
)
binary = (
('address-read', 'Address read'),
('address-write', 'Address write'),
('data-read', 'Data read'),
('data-write', 'Data write'),
)
def __init__(self):
self.reset()
def reset(self):
self.samplerate = None
self.ss = self.es = self.ss_byte = -1
self.is_write = None
self.rem_addr_bytes = None
self.is_repeat_start = False
self.state = 'FIND START'
self.pdu_start = None
self.pdu_bits = 0
self.data_bits = []
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def start(self):
self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_bitrate = self.register(srd.OUTPUT_META,
meta=(int, 'Bitrate', 'Bitrate from Start bit to Stop bit'))
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putp(self, data):
self.put(self.ss, self.es, self.out_python, data)
def putb(self, data):
self.put(self.ss, self.es, self.out_binary, data)
def handle_start(self, pins):
self.ss, self.es = self.samplenum, self.samplenum
if self.is_repeat_start:
cmd = 'START REPEAT'
else:
cmd = 'START'
self.pdu_start = self.samplenum
self.pdu_bits = 0
self.putp([cmd, None])
cls, texts = proto[cmd][0], proto[cmd][1:]
self.putx([cls, texts])
self.state = 'FIND ADDRESS'
self.is_repeat_start = True
self.is_write = None
self.rem_addr_bytes = None
self.data_bits.clear()
# Gather 8 bits of data plus the ACK/NACK bit.
def handle_address_or_data(self, pins):
scl, sda = pins
self.pdu_bits += 1
# Accumulate a byte's bits, including its start position.
# Accumulate individual bits and their start/end sample numbers
# as we see them. Get the start sample number at the time when
# the bit value gets sampled. Assume the start of the next bit
# as the end sample number of the previous bit. Guess the last
# bit's end sample number from the second last bit's width.
# (gsi: Shouldn't falling SCL be the end of the bit value?)
# Keep the bits in receive order (MSB first) during accumulation.
if not self.data_bits:
self.ss_byte = self.samplenum
if self.data_bits:
self.data_bits[-1][2] = self.samplenum
self.data_bits.append([sda, self.samplenum, self.samplenum])
if len(self.data_bits) < 8:
return
self.bitwidth = self.data_bits[-2][2] - self.data_bits[-3][2]
self.data_bits[-1][2] += self.bitwidth
# Get the byte value. Address and data are transmitted MSB-first.
d = bitpack_msb(self.data_bits, 0)
if self.state == 'FIND ADDRESS':
# The READ/WRITE bit is only in the first address byte, not
# in data bytes. Address bit pattern 0b1111_0xxx means that
# this is a 10bit slave address, another byte follows. Get
# the R/W direction and the address bytes count from the
# first byte in the I2C transfer.
addr_byte = d
if self.rem_addr_bytes is None:
if (addr_byte & 0xf8) == 0xf0:
self.rem_addr_bytes = 2
self.slave_addr_7 = None
self.slave_addr_10 = addr_byte & 0x06
self.slave_addr_10 <<= 7
else:
self.rem_addr_bytes = 1
self.slave_addr_7 = addr_byte >> 1
self.slave_addr_10 = None
is_seven = self.slave_addr_7 is not None
if self.is_write is None:
read_bit = bool(addr_byte & 1)
shift_seven = self.options['address_format'] == 'shifted'
if is_seven and shift_seven:
d = d >> 1
self.is_write = False if read_bit else True
else:
self.slave_addr_10 |= addr_byte
bin_class = -1
if self.state == 'FIND ADDRESS' and self.is_write:
cmd = 'ADDRESS WRITE'
bin_class = 1
elif self.state == 'FIND ADDRESS' and not self.is_write:
cmd = 'ADDRESS READ'
bin_class = 0
elif self.state == 'FIND DATA' and self.is_write:
cmd = 'DATA WRITE'
bin_class = 3
elif self.state == 'FIND DATA' and not self.is_write:
cmd = 'DATA READ'
bin_class = 2
self.ss, self.es = self.ss_byte, self.samplenum + self.bitwidth
# Reverse the list of bits to LSB first order before emitting
# annotations and passing bits to upper layers. This may be
# unexpected because the protocol is MSB first, but it keeps
# backwards compatibility.
self.data_bits.reverse()
self.putp(['BITS', self.data_bits])
self.putp([cmd, d])
self.putb([bin_class, bytes([d])])
for b, ss, es in self.data_bits:
cls, texts = proto['BIT'][0], proto['BIT'][1:]
texts = [t.format(b = b) for t in texts]
self.put(ss, es, self.out_ann, [cls, texts])
if cmd.startswith('ADDRESS') and is_seven:
self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
cls = proto[cmd][0]
w = ['Write', 'Wr', 'W'] if self.is_write else ['Read', 'Rd', 'R']
self.putx([cls, w])
self.ss, self.es = self.ss_byte, self.samplenum
cls, texts = proto[cmd][0], proto[cmd][1:]
texts = [t.format(b = d) for t in texts]
self.putx([cls, texts])
# Done with this packet.
self.data_bits.clear()
self.state = 'FIND ACK'
def get_ack(self, pins):
scl, sda = pins
# NOTE! Re-uses the last data bit's width for ACK/NAK as well.
# Which might be acceptable because this decoder implementation
# only gets to handle ACK/NAK after all DATA BITS were seen.
self.ss, self.es = self.samplenum, self.samplenum + self.bitwidth
cmd = 'NACK' if (sda == 1) else 'ACK'
self.putp([cmd, None])
cls, texts = proto[cmd][0], proto[cmd][1:]
self.putx([cls, texts])
# Slave addresses can span one or two bytes, before data bytes
# follow. There can be an arbitrary number of data bytes. Stick
# with getting more address bytes if applicable, or enter or
# remain in the data phase of the transfer otherwise.
if self.rem_addr_bytes:
self.rem_addr_bytes -= 1
if self.rem_addr_bytes:
self.state = 'FIND ADDRESS'
else:
self.state = 'FIND DATA'
def handle_stop(self, pins):
# Meta bitrate
if self.samplerate and self.pdu_start:
elapsed = self.samplenum - self.pdu_start + 1
elapsed /= self.samplerate
bitrate = int(1 / elapsed * self.pdu_bits)
ss, es = self.pdu_start, self.samplenum
self.put(ss, es, self.out_bitrate, bitrate)
self.pdu_start = None
self.pdu_bits = 0
cmd = 'STOP'
self.ss, self.es = self.samplenum, self.samplenum
self.putp([cmd, None])
cls, texts = proto[cmd][0], proto[cmd][1:]
self.putx([cls, texts])
self.state = 'FIND START'
self.is_repeat_start = False
self.is_write = None
self.data_bits.clear()
def decode(self):
while True:
# State machine.
if self.state == 'FIND START':
# Wait for a START condition (S): SCL = high, SDA = falling.
self.handle_start(self.wait({0: 'h', 1: 'f'}))
elif self.state == 'FIND ADDRESS':
# Wait for a data bit: SCL = rising.
self.handle_address_or_data(self.wait({0: 'r'}))
elif self.state == 'FIND DATA':
# Wait for any of the following conditions (or combinations):
# a) Data sampling of receiver: SCL = rising, and/or
# b) START condition (S): SCL = high, SDA = falling, and/or
# c) STOP condition (P): SCL = high, SDA = rising
pins = self.wait([{0: 'r'}, {0: 'h', 1: 'f'}, {0: 'h', 1: 'r'}])
# Check which of the condition(s) matched and handle them.
if self.matched[0]:
self.handle_address_or_data(pins)
elif self.matched[1]:
self.handle_start(pins)
elif self.matched[2]:
self.handle_stop(pins)
elif self.state == 'FIND ACK':
# Wait for a data/ack bit: SCL = rising.
self.get_ack(self.wait({0: 'r'}))
|