1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2010-2013 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
# I2C protocol decoder
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Implement support for 10bit slave addresses.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
import sigrokdecode as srd
'''
Protocol output format:
I2C packet:
[<cmd>, <data>]
<cmd> is one of:
- 'START' (START condition)
- 'START REPEAT' (Repeated START condition)
- 'ADDRESS READ' (Slave address, read)
- 'ADDRESS WRITE' (Slave address, write)
- 'DATA READ' (Data, read)
- 'DATA WRITE' (Data, write)
- 'STOP' (STOP condition)
- 'ACK' (ACK bit)
- 'NACK' (NACK bit)
<data> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. Slave addresses do not include bit 0 (the READ/WRITE indication bit).
For example, a slave address field could be 0x51 (instead of 0xa2).
For 'START', 'START REPEAT', 'STOP', 'ACK', and 'NACK' <data> is None.
'''
# CMD: [annotation-type-index, long annotation, short annotation]
proto = {
'START': [0, 'Start', 'S'],
'START REPEAT': [1, 'Start repeat', 'Sr'],
'STOP': [2, 'Stop', 'P'],
'ACK': [3, 'ACK', 'A'],
'NACK': [4, 'NACK', 'N'],
'ADDRESS READ': [5, 'Address read', 'AR'],
'ADDRESS WRITE': [6, 'Address write', 'AW'],
'DATA READ': [7, 'Data read', 'DR'],
'DATA WRITE': [8, 'Data write', 'DW'],
}
class Decoder(srd.Decoder):
api_version = 1
id = 'i2c'
name = 'I2C'
longname = 'Inter-Integrated Circuit'
desc = 'Two-wire, multi-master, serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['i2c']
probes = [
{'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
{'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
]
optional_probes = []
options = {
'address_format': ['Displayed slave address format', 'shifted'],
}
annotations = [
['Start', 'Start condition'],
['Repeat start', 'Repeat start condition'],
['Stop', 'Stop condition'],
['ACK', 'ACK'],
['NACK', 'NACK'],
['Address read', 'Address read'],
['Address write', 'Address write'],
['Data read', 'Data read'],
['Data write', 'Data write'],
['Warnings', 'Human-readable warnings'],
]
def __init__(self, **kwargs):
self.startsample = -1
self.samplenum = None
self.bitcount = 0
self.databyte = 0
self.wr = -1
self.is_repeat_start = 0
self.state = 'FIND START'
self.oldscl = 1
self.oldsda = 1
self.oldpins = [1, 1]
def start(self, metadata):
self.out_proto = self.add(srd.OUTPUT_PROTO, 'i2c')
self.out_ann = self.add(srd.OUTPUT_ANN, 'i2c')
def report(self):
pass
def putx(self, data):
self.put(self.startsample, self.samplenum, self.out_ann, data)
def putp(self, data):
self.put(self.startsample, self.samplenum, self.out_proto, data)
def is_start_condition(self, scl, sda):
# START condition (S): SDA = falling, SCL = high
if (self.oldsda == 1 and sda == 0) and scl == 1:
return True
return False
def is_data_bit(self, scl, sda):
# Data sampling of receiver: SCL = rising
if self.oldscl == 0 and scl == 1:
return True
return False
def is_stop_condition(self, scl, sda):
# STOP condition (P): SDA = rising, SCL = high
if (self.oldsda == 0 and sda == 1) and scl == 1:
return True
return False
def found_start(self, scl, sda):
self.startsample = self.samplenum
cmd = 'START REPEAT' if (self.is_repeat_start == 1) else 'START'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND ADDRESS'
self.bitcount = self.databyte = 0
self.is_repeat_start = 1
self.wr = -1
# Gather 8 bits of data plus the ACK/NACK bit.
def found_address_or_data(self, scl, sda):
# Address and data are transmitted MSB-first.
self.databyte <<= 1
self.databyte |= sda
if self.bitcount == 0:
self.startsample = self.samplenum
# Return if we haven't collected all 8 + 1 bits, yet.
self.bitcount += 1
if self.bitcount != 8:
return
# We triggered on the ACK/NACK bit, but won't report that until later.
self.startsample -= 1
d = self.databyte
if self.state == 'FIND ADDRESS':
# The READ/WRITE bit is only in address bytes, not data bytes.
self.wr = 0 if (self.databyte & 1) else 1
if self.options['address_format'] == 'shifted':
d = d >> 1
if self.state == 'FIND ADDRESS' and self.wr == 1:
cmd = 'ADDRESS WRITE'
elif self.state == 'FIND ADDRESS' and self.wr == 0:
cmd = 'ADDRESS READ'
elif self.state == 'FIND DATA' and self.wr == 1:
cmd = 'DATA WRITE'
elif self.state == 'FIND DATA' and self.wr == 0:
cmd = 'DATA READ'
self.putp([cmd, d])
self.putx([proto[cmd][0], ['%s: %02X' % (proto[cmd][1], d),
'%s: %02X' % (proto[cmd][2], d), '%02X' % d]])
# Done with this packet.
self.startsample = -1
self.bitcount = self.databyte = 0
self.state = 'FIND ACK'
def get_ack(self, scl, sda):
self.startsample = self.samplenum
cmd = 'NACK' if (sda == 1) else 'ACK'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
# There could be multiple data bytes in a row, so either find
# another data byte or a STOP condition next.
self.state = 'FIND DATA'
def found_stop(self, scl, sda):
self.startsample = self.samplenum
cmd = 'STOP'
self.putp([cmd, None])
self.putx([proto[cmd][0], proto[cmd][1:]])
self.state = 'FIND START'
self.is_repeat_start = 0
self.wr = -1
def decode(self, ss, es, data):
for (self.samplenum, pins) in data:
# Ignore identical samples early on (for performance reasons).
if self.oldpins == pins:
continue
self.oldpins, (scl, sda) = pins, pins
# TODO: Wait until the bus is idle (SDA = SCL = 1) first?
# State machine.
if self.state == 'FIND START':
if self.is_start_condition(scl, sda):
self.found_start(scl, sda)
elif self.state == 'FIND ADDRESS':
if self.is_data_bit(scl, sda):
self.found_address_or_data(scl, sda)
elif self.state == 'FIND DATA':
if self.is_data_bit(scl, sda):
self.found_address_or_data(scl, sda)
elif self.is_start_condition(scl, sda):
self.found_start(scl, sda)
elif self.is_stop_condition(scl, sda):
self.found_stop(scl, sda)
elif self.state == 'FIND ACK':
if self.is_data_bit(scl, sda):
self.get_ack(scl, sda)
else:
raise Exception('Invalid state: %s' % self.state)
# Save current SDA/SCL values for the next round.
self.oldscl = scl
self.oldsda = sda
|