1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2010-2011 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
#
# I2C protocol decoder
#
#
# The Inter-Integrated Circuit (I2C) bus is a bidirectional, multi-master
# bus using two signals (SCL = serial clock line, SDA = serial data line).
#
# There can be many devices on the same bus. Each device can potentially be
# master or slave (and that can change during runtime). Both slave and master
# can potentially play the transmitter or receiver role (this can also
# change at runtime).
#
# Possible maximum data rates:
# - Standard mode: 100 kbit/s
# - Fast mode: 400 kbit/s
# - Fast-mode Plus: 1 Mbit/s
# - High-speed mode: 3.4 Mbit/s
#
# START condition (S): SDA = falling, SCL = high
# Repeated START condition (Sr): same as S
# Data bit sampling: SCL = rising
# STOP condition (P): SDA = rising, SCL = high
#
# All data bytes on SDA are exactly 8 bits long (transmitted MSB-first).
# Each byte has to be followed by a 9th ACK/NACK bit. If that bit is low,
# that indicates an ACK, if it's high that indicates a NACK.
#
# After the first START condition, a master sends the device address of the
# slave it wants to talk to. Slave addresses are 7 bits long (MSB-first).
# After those 7 bits, a data direction bit is sent. If the bit is low that
# indicates a WRITE operation, if it's high that indicates a READ operation.
#
# Later an optional 10bit slave addressing scheme was added.
#
# Documentation:
# http://www.nxp.com/acrobat/literature/9398/39340011.pdf (v2.1 spec)
# http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf (v3 spec)
# http://en.wikipedia.org/wiki/I2C
#
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Handle clock stretching.
# TODO: Handle combined messages / repeated START.
# TODO: Implement support for 7bit and 10bit slave addresses.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
# TODO: I2C address of slaves.
# TODO: Handle multiple different I2C devices on same bus
# -> we need to decode multiple protocols at the same time.
'''
Protocol output format:
I2C packet:
[<i2c_command>, <data>, <ack_bit>]
<i2c_command> is one of:
- 'START' (START condition)
- 'START REPEAT' (Repeated START)
- 'ADDRESS READ' (Address, read)
- 'ADDRESS WRITE' (Address, write)
- 'DATA READ' (Data, read)
- 'DATA WRITE' (Data, write)
- 'STOP' (STOP condition)
<data> is the data or address byte associated with the 'ADDRESS*' and 'DATA*'
command. For 'START', 'START REPEAT' and 'STOP', this is None.
<ack_bit> is either 'ACK' or 'NACK', but may also be None.
'''
import sigrokdecode as srd
# Annotation feed formats
ANN_SHIFTED = 0
ANN_SHIFTED_SHORT = 1
ANN_RAW = 2
# Values are verbose and short annotation, respectively.
protocol = {
'START': ['START', 'S'],
'START REPEAT': ['START REPEAT', 'Sr'],
'STOP': ['STOP', 'P'],
'ACK': ['ACK', 'A'],
'NACK': ['NACK', 'N'],
'ADDRESS READ': ['ADDRESS READ', 'AR'],
'ADDRESS WRITE': ['ADDRESS WRITE', 'AW'],
'DATA READ': ['DATA READ', 'DR'],
'DATA WRITE': ['DATA WRITE', 'DW'],
}
# States
FIND_START = 0
FIND_ADDRESS = 1
FIND_DATA = 2
class Decoder(srd.Decoder):
api_version = 1
id = 'i2c'
name = 'I2C'
longname = 'Inter-Integrated Circuit'
desc = 'I2C is a two-wire, multi-master, serial bus.'
longdesc = '...'
license = 'gplv2+'
inputs = ['logic']
outputs = ['i2c']
probes = [
{'id': 'scl', 'name': 'SCL', 'desc': 'Serial clock line'},
{'id': 'sda', 'name': 'SDA', 'desc': 'Serial data line'},
]
optional_probes = []
options = {
'addressing': ['Slave addressing (in bits)', 7], # 7 or 10
}
annotations = [
# ANN_SHIFTED
['7-bit shifted hex',
'Read/write bit shifted out from the 8-bit I2C slave address'],
# ANN_SHIFTED_SHORT
['7-bit shifted hex (short)',
'Read/write bit shifted out from the 8-bit I2C slave address'],
# ANN_RAW
['Raw hex', 'Unaltered raw data'],
]
def __init__(self, **kwargs):
self.startsample = -1
self.samplenum = None
self.bitcount = 0
self.databyte = 0
self.wr = -1
self.is_repeat_start = 0
self.state = FIND_START
self.oldscl = None
self.oldsda = None
def start(self, metadata):
self.out_proto = self.add(srd.OUTPUT_PROTO, 'i2c')
self.out_ann = self.add(srd.OUTPUT_ANN, 'i2c')
def report(self):
pass
def is_start_condition(self, scl, sda):
# START condition (S): SDA = falling, SCL = high
if (self.oldsda == 1 and sda == 0) and scl == 1:
return True
return False
def is_data_bit(self, scl, sda):
# Data sampling of receiver: SCL = rising
if self.oldscl == 0 and scl == 1:
return True
return False
def is_stop_condition(self, scl, sda):
# STOP condition (P): SDA = rising, SCL = high
if (self.oldsda == 0 and sda == 1) and scl == 1:
return True
return False
def found_start(self, scl, sda):
self.startsample = self.samplenum
cmd = 'START REPEAT' if (self.is_repeat_start == 1) else 'START'
self.put(self.out_proto, [cmd, None, None])
self.put(self.out_ann, [ANN_SHIFTED, [protocol[cmd][0]]])
self.put(self.out_ann, [ANN_SHIFTED_SHORT, [protocol[cmd][1]]])
self.state = FIND_ADDRESS
self.bitcount = self.databyte = 0
self.is_repeat_start = 1
self.wr = -1
# Gather 8 bits of data plus the ACK/NACK bit.
def found_address_or_data(self, scl, sda):
# Address and data are transmitted MSB-first.
self.databyte <<= 1
self.databyte |= sda
if self.bitcount == 0:
self.startsample = self.samplenum
# Return if we haven't collected all 8 + 1 bits, yet.
self.bitcount += 1
if self.bitcount != 9:
return
# Send raw output annotation before we start shifting out
# read/write and ack/nack bits.
self.put(self.out_ann, [ANN_RAW, ['0x%.2x' % self.databyte]])
# We received 8 address/data bits and the ACK/NACK bit.
self.databyte >>= 1 # Shift out unwanted ACK/NACK bit here.
if self.state == FIND_ADDRESS:
# The READ/WRITE bit is only in address bytes, not data bytes.
self.wr = 0 if (self.databyte & 1) else 1
d = self.databyte >> 1
elif self.state == FIND_DATA:
d = self.databyte
else:
# TODO: Error?
pass
# Last bit that came in was the ACK/NACK bit (1 = NACK).
ack_bit = 'NACK' if (sda == 1) else 'ACK'
if self.state == FIND_ADDRESS and self.wr == 1:
cmd = 'ADDRESS WRITE'
elif self.state == FIND_ADDRESS and self.wr == 0:
cmd = 'ADDRESS READ'
elif self.state == FIND_DATA and self.wr == 1:
cmd = 'DATA WRITE'
elif self.state == FIND_DATA and self.wr == 0:
cmd = 'DATA READ'
self.put(self.out_proto, [cmd, d, ack_bit])
self.put(self.out_ann, [ANN_SHIFTED,
[protocol[cmd][0], '0x%02x' % d, protocol[ack_bit][0]]])
self.put(self.out_ann, [ANN_SHIFTED_SHORT,
[protocol[cmd][1], '0x%02x' % d, protocol[ack_bit][1]]])
self.bitcount = self.databyte = 0
self.startsample = -1
if self.state == FIND_ADDRESS:
self.state = FIND_DATA
elif self.state == FIND_DATA:
# There could be multiple data bytes in a row.
# So, either find a STOP condition or another data byte next.
pass
def found_stop(self, scl, sda):
self.startsample = self.samplenum
self.put(self.out_proto, ['STOP', None, None])
self.put(self.out_ann, [ANN_SHIFTED, [protocol['STOP'][0]]])
self.put(self.out_ann, [ANN_SHIFTED_SHORT, [protocol['STOP'][1]]])
self.state = FIND_START
self.is_repeat_start = 0
self.wr = -1
def put(self, output_id, data):
# Inject sample range into the call up to sigrok.
super(Decoder, self).put(self.startsample, self.samplenum, output_id, data)
def decode(self, ss, es, data):
for samplenum, (scl, sda) in data:
self.samplenum = samplenum
# First sample: Save SCL/SDA value.
if self.oldscl == None:
self.oldscl = scl
self.oldsda = sda
continue
# TODO: Wait until the bus is idle (SDA = SCL = 1) first?
# State machine.
if self.state == FIND_START:
if self.is_start_condition(scl, sda):
self.found_start(scl, sda)
elif self.state == FIND_ADDRESS:
if self.is_data_bit(scl, sda):
self.found_address_or_data(scl, sda)
elif self.state == FIND_DATA:
if self.is_data_bit(scl, sda):
self.found_address_or_data(scl, sda)
elif self.is_start_condition(scl, sda):
self.found_start(scl, sda)
elif self.is_stop_condition(scl, sda):
self.found_stop(scl, sda)
else:
raise Exception('Invalid state %d' % self.STATE)
# Save current SDA/SCL values for the next round.
self.oldscl = scl
self.oldsda = sda
|