1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
##
## This file is part of the sigrok project.
##
## Copyright (C) 2010-2011 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
#
# I2C protocol decoder
#
#
# The Inter-Integrated Circuit (I2C) bus is a bidirectional, multi-master
# bus using two signals (SCL = serial clock line, SDA = serial data line).
#
# There can be many devices on the same bus. Each device can potentially be
# master or slave (and that can change during runtime). Both slave and master
# can potentially play the transmitter or receiver role (this can also
# change at runtime).
#
# Possible maximum data rates:
# - Standard mode: 100 kbit/s
# - Fast mode: 400 kbit/s
# - Fast-mode Plus: 1 Mbit/s
# - High-speed mode: 3.4 Mbit/s
#
# START condition (S): SDA = falling, SCL = high
# Repeated START condition (Sr): same as S
# Data bit sampling: SCL = rising
# STOP condition (P): SDA = rising, SCL = high
#
# All data bytes on SDA are exactly 8 bits long (transmitted MSB-first).
# Each byte has to be followed by a 9th ACK/NACK bit. If that bit is low,
# that indicates an ACK, if it's high that indicates a NACK.
#
# After the first START condition, a master sends the device address of the
# slave it wants to talk to. Slave addresses are 7 bits long (MSB-first).
# After those 7 bits, a data direction bit is sent. If the bit is low that
# indicates a WRITE operation, if it's high that indicates a READ operation.
#
# Later an optional 10bit slave addressing scheme was added.
#
# Documentation:
# http://www.nxp.com/acrobat/literature/9398/39340011.pdf (v2.1 spec)
# http://www.nxp.com/acrobat/usermanuals/UM10204_3.pdf (v3 spec)
# http://en.wikipedia.org/wiki/I2C
#
# TODO: Look into arbitration, collision detection, clock synchronisation, etc.
# TODO: Handle clock stretching.
# TODO: Handle combined messages / repeated START.
# TODO: Implement support for 7bit and 10bit slave addresses.
# TODO: Implement support for inverting SDA/SCL levels (0->1 and 1->0).
# TODO: Implement support for detecting various bus errors.
#
# I2C output format:
#
# The output consists of a (Python) list of I2C "packets", each of which
# has an (implicit) index number (its index in the list).
# Each packet consists of a Python dict with certain key/value pairs.
#
# TODO: Make this a list later instead of a dict?
#
# 'type': (string)
# - 'S' (START condition)
# - 'Sr' (Repeated START)
# - 'AR' (Address, read)
# - 'AW' (Address, write)
# - 'DR' (Data, read)
# - 'DW' (Data, write)
# - 'P' (STOP condition)
# 'range': (tuple of 2 integers, the min/max samplenumber of this range)
# - (min, max)
# - min/max can also be identical.
# 'data': (actual data as integer ???) TODO: This can be very variable...
# 'ann': (string; additional annotations / comments)
#
# Example output:
# [{'type': 'S', 'range': (150, 160), 'data': None, 'ann': 'Foobar'},
# {'type': 'AW', 'range': (200, 300), 'data': 0x50, 'ann': 'Slave 4'},
# {'type': 'DW', 'range': (310, 370), 'data': 0x00, 'ann': 'Init cmd'},
# {'type': 'AR', 'range': (500, 560), 'data': 0x50, 'ann': 'Get stat'},
# {'type': 'DR', 'range': (580, 640), 'data': 0xfe, 'ann': 'OK'},
# {'type': 'P', 'range': (650, 660), 'data': None, 'ann': None}]
#
# Possible other events:
# - Error event in case protocol looks broken:
# [{'type': 'ERROR', 'range': (min, max),
# 'data': TODO, 'ann': 'This is not a Microchip 24XX64 EEPROM'},
# [{'type': 'ERROR', 'range': (min, max),
# 'data': TODO, 'ann': 'TODO'},
# - TODO: Make list of possible errors accessible as metadata?
#
# TODO: I2C address of slaves.
# TODO: Handle multiple different I2C devices on same bus
# -> we need to decode multiple protocols at the same time.
# TODO: range: Always contiguous? Splitted ranges? Multiple per event?
#
#
# I2C input format:
#
# signals:
# [[id, channel, description], ...] # TODO
#
# Example:
# {'id': 'SCL', 'ch': 5, 'desc': 'Serial clock line'}
# {'id': 'SDA', 'ch': 7, 'desc': 'Serial data line'}
# ...
#
# {'inbuf': [...],
# 'signals': [{'SCL': }]}
#
class Sample():
def __init__(self, data):
self.data = data
def probe(self, probe):
s = ord(self.data[probe / 8]) & (1 << (probe % 8))
return True if s else False
def sampleiter(data, unitsize):
for i in range(0, len(data), unitsize):
yield(Sample(data[i:i+unitsize]))
class Decoder():
name = 'I2C'
longname = 'Inter-Integrated Circuit (I2C) bus'
desc = 'I2C is a two-wire, multi-master, serial bus.'
longdesc = '...'
author = 'Uwe Hermann'
email = 'uwe@hermann-uwe.de'
license = 'gplv2+'
inputs = ['logic']
outputs = ['i2c']
probes = {
'scl': {'ch': 0, 'name': 'SCL', 'desc': 'Serial clock line'},
'sda': {'ch': 1, 'name': 'SDA', 'desc': 'Serial data line'},
}
options = {
'address-space': ['Address space (in bits)', 7],
}
def __init__(self, **kwargs):
self.probes = Decoder.probes.copy()
# TODO: Don't hardcode the number of channels.
self.channels = 8
self.samplenum = 0
self.bitcount = 0
self.databyte = 0
self.wr = -1
self.startsample = -1
self.is_repeat_start = 0
self.FIND_START, self.FIND_ADDRESS, self.FIND_DATA = range(3)
self.state = self.FIND_START
# Get the channel/probe number of the SCL/SDA signals.
self.scl_bit = self.probes['scl']['ch']
self.sda_bit = self.probes['sda']['ch']
self.oldscl = None
self.oldsda = None
def start(self, metadata):
self.unitsize = metadata["unitsize"]
def report(self):
pass
def is_start_condition(self, scl, sda):
"""START condition (S): SDA = falling, SCL = high"""
if (self.oldsda == 1 and sda == 0) and scl == 1:
return True
return False
def is_data_bit(self, scl, sda):
"""Data sampling of receiver: SCL = rising"""
if self.oldscl == 0 and scl == 1:
return True
return False
def is_stop_condition(self, scl, sda):
"""STOP condition (P): SDA = rising, SCL = high"""
if (self.oldsda == 0 and sda == 1) and scl == 1:
return True
return False
def find_start(self, scl, sda):
out = []
# o = {'type': 'S', 'range': (self.samplenum, self.samplenum),
# 'data': None, 'ann': None},
o = (self.is_repeat_start == 1) and 'Sr' or 'S'
out.append(o)
self.state = self.FIND_ADDRESS
self.bitcount = self.databyte = 0
self.is_repeat_start = 1
self.wr = -1
return out
def find_address_or_data(self, scl, sda):
"""Gather 8 bits of data plus the ACK/NACK bit."""
out = o = []
if self.startsample == -1:
self.startsample = self.samplenum
self.bitcount += 1
# Address and data are transmitted MSB-first.
self.databyte <<= 1
self.databyte |= sda
# Return if we haven't collected all 8 + 1 bits, yet.
if self.bitcount != 9:
return []
# We received 8 address/data bits and the ACK/NACK bit.
self.databyte >>= 1 # Shift out unwanted ACK/NACK bit here.
ack = (sda == 1) and 'N' or 'A'
if self.state == self.FIND_ADDRESS:
d = self.databyte & 0xfe
# The READ/WRITE bit is only in address bytes, not data bytes.
self.wr = (self.databyte & 1) and 1 or 0
elif self.state == self.FIND_DATA:
d = self.databyte
else:
# TODO: Error?
pass
# o = {'type': self.state,
# 'range': (self.startsample, self.samplenum - 1),
# 'data': d, 'ann': None}
o = {'data': '0x%02x' % d}
# TODO: Simplify.
if self.state == self.FIND_ADDRESS and self.wr == 1:
o['type'] = 'AW'
elif self.state == self.FIND_ADDRESS and self.wr == 0:
o['type'] = 'AR'
elif self.state == self.FIND_DATA and self.wr == 1:
o['type'] = 'DW'
elif self.state == self.FIND_DATA and self.wr == 0:
o['type'] = 'DR'
out.append(o)
# o = {'type': ack, 'range': (self.samplenum, self.samplenum),
# 'data': None, 'ann': None}
o = ack
out.append(o)
self.bitcount = self.databyte = 0
self.startsample = -1
if self.state == self.FIND_ADDRESS:
self.state = self.FIND_DATA
elif self.state == self.FIND_DATA:
# There could be multiple data bytes in a row.
# So, either find a STOP condition or another data byte next.
pass
return out
def find_stop(self, scl, sda):
out = o = []
# o = {'type': 'P', 'range': (self.samplenum, self.samplenum),
# 'data': None, 'ann': None},
o = 'P'
out.append(o)
self.state = self.FIND_START
self.is_repeat_start = 0
self.wr = -1
return out
def decode(self, data):
"""I2C protocol decoder"""
out = []
o = ack = d = ''
# We should accept a list of samples and iterate...
for sample in sampleiter(data['data'], self.unitsize):
# TODO: Eliminate the need for ord().
s = ord(sample.data)
# TODO: Start counting at 0 or 1?
self.samplenum += 1
# First sample: Save SCL/SDA value.
if self.oldscl == None:
# Get SCL/SDA bit values (0/1 for low/high) of the first sample.
self.oldscl = (s & (1 << self.scl_bit)) >> self.scl_bit
self.oldsda = (s & (1 << self.sda_bit)) >> self.sda_bit
continue
# Get SCL/SDA bit values (0/1 for low/high).
scl = (s & (1 << self.scl_bit)) >> self.scl_bit
sda = (s & (1 << self.sda_bit)) >> self.sda_bit
# TODO: Wait until the bus is idle (SDA = SCL = 1) first?
# State machine.
if self.state == self.FIND_START:
if self.is_start_condition(scl, sda):
out += self.find_start(scl, sda)
elif self.state == self.FIND_ADDRESS:
if self.is_data_bit(scl, sda):
out += self.find_address_or_data(scl, sda)
elif self.state == self.FIND_DATA:
if self.is_data_bit(scl, sda):
out += self.find_address_or_data(scl, sda)
elif self.is_start_condition(scl, sda):
out += self.find_start(scl, sda)
elif self.is_stop_condition(scl, sda):
out += self.find_stop(scl, sda)
else:
# TODO: Error?
pass
# Save current SDA/SCL values for the next round.
self.oldscl = scl
self.oldsda = sda
if out != []:
sigrok.put(out)
import sigrok
|