1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2015 Benjamin Larsson <benjamin@southpole.se>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'em4100'
name = 'EM4100'
longname = 'RFID EM4100'
desc = 'EM4100 100-150kHz RFID protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['em4100']
channels = (
{'id': 'data', 'name': 'Data', 'desc': 'Data line'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
'values': ('active-low', 'active-high')},
{'id': 'datarate' , 'desc': 'Data rate', 'default': 64,
'values': (64, 32, 16)},
# {'id': 'coding', 'desc': 'Bit coding', 'default': 'biphase',
# 'values': ('biphase', 'manchester', 'psk')},
{'id': 'coilfreq', 'desc': 'Coil frequency', 'default': 125000},
)
annotations = (
('bit', 'Bit'),
('header', 'Header'),
('version-customer', 'Version/customer'),
('data', 'Data'),
('rowparity-ok', 'Row parity OK'),
('rowparity-err', 'Row parity error'),
('colparity-ok', 'Column parity OK'),
('colparity-err', 'Column parity error'),
('stopbit', 'Stop bit'),
('tag', 'Tag'),
)
annotation_rows = (
('bits', 'Bits', (0,)),
('fields', 'Fields', (1, 2, 3, 4, 5, 6, 7, 8)),
('tags', 'Tags', (9,)),
)
def __init__(self):
self.samplerate = None
self.oldpin = None
self.last_samplenum = None
self.lastlast_samplenum = None
self.last_edge = 0
self.bit_width = 0
self.halfbit_limit = 0
self.oldpp = 0
self.oldpl = 0
self.oldsamplenum = 0
self.last_bit_pos = 0
self.ss_first = 0
self.first_one = 0
self.state = 'HEADER'
self.data = 0
self.data_bits = 0
self.ss_data = 0
self.data_parity = 0
self.payload_cnt = 0
self.data_col_parity = [0, 0, 0, 0, 0, 0]
self.col_parity = [0, 0, 0, 0, 0, 0]
self.tag = 0
self.all_row_parity_ok = True
self.col_parity_pos = []
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
self.bit_width = (self.samplerate / self.options['coilfreq']) * self.options['datarate']
self.halfbit_limit = self.bit_width/2 + self.bit_width/4
self.polarity = 0 if self.options['polarity'] == 'active-low' else 1
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putbit(self, bit, ss, es):
self.put(ss, es, self.out_ann, [0, [str(bit)]])
if self.state == 'HEADER':
if bit == 1:
if self.first_one > 0:
self.first_one += 1
if self.first_one == 9:
self.put(self.ss_first, es, self.out_ann,
[1, ['Header', 'Head', 'He', 'H']])
self.first_one = 0
self.state = 'PAYLOAD'
return
if self.first_one == 0:
self.first_one = 1
self.ss_first = ss
if bit == 0:
self.first_one = 0
return
if self.state == 'PAYLOAD':
self.payload_cnt += 1
if self.data_bits == 0:
self.ss_data = ss
self.data = 0
self.data_parity = 0
self.data_bits += 1
if self.data_bits == 5:
s = 'Version/customer' if self.payload_cnt <= 10 else 'Data'
c = 2 if self.payload_cnt <= 10 else 3
self.put(self.ss_data, ss, self.out_ann,
[c, [s + ': %X' % self.data, '%X' % self.data]])
s = 'OK' if self.data_parity == bit else 'ERROR'
c = 4 if s == 'OK' else 5
if s == 'ERROR':
self.all_row_parity_ok = False
self.put(ss, es, self.out_ann,
[c, ['Row parity: ' + s, 'RP: ' + s, 'RP', 'R']])
self.tag = (self.tag << 4) | self.data
self.data_bits = 0
if self.payload_cnt == 50:
self.state = 'TRAILER'
self.payload_cnt = 0
self.data_parity ^= bit
self.data_col_parity[self.data_bits] ^= bit
self.data = (self.data << 1) | bit
return
if self.state == 'TRAILER':
self.payload_cnt += 1
if self.data_bits == 0:
self.ss_data = ss
self.data = 0
self.data_parity = 0
self.data_bits += 1
self.col_parity[self.data_bits] = bit
self.col_parity_pos.append([ss, es])
if self.data_bits == 5:
self.put(ss, es, self.out_ann, [8, ['Stop bit', 'SB', 'S']])
for i in range(1, 5):
s = 'OK' if self.data_col_parity[i] == \
self.col_parity[i] else 'ERROR'
c = 6 if s == 'OK' else 7
self.put(self.col_parity_pos[i - 1][0],
self.col_parity_pos[i - 1][1], self.out_ann,
[c, ['Column parity %d: %s' % (i, s),
'CP%d: %s' % (i, s), 'CP%d' % i, 'C']])
# Emit an annotation for valid-looking tags.
all_col_parity_ok = (self.data_col_parity[1:5] == self.col_parity[1:5])
if all_col_parity_ok and self.all_row_parity_ok:
self.put(self.ss_first, es, self.out_ann,
[9, ['Tag: %010X' % self.tag, 'Tag', 'T']])
self.tag = 0
self.data_bits = 0
if self.payload_cnt == 5:
self.state = 'HEADER'
self.payload_cnt = 0
self.data_col_parity = [0, 0, 0, 0, 0, 0]
self.col_parity = [0, 0, 0, 0, 0, 0]
self.col_parity_pos = []
self.all_row_parity_ok = True
def manchester_decode(self, pl, pp, pin):
bit = self.oldpin ^ self.polarity
if pl > self.halfbit_limit:
es = int(self.samplenum - pl/2)
if self.oldpl > self.halfbit_limit:
ss = int(self.oldsamplenum - self.oldpl/2)
else:
ss = int(self.oldsamplenum - self.oldpl)
self.putbit(bit, ss, es)
self.last_bit_pos = int(self.samplenum - pl/2)
else:
es = int(self.samplenum)
if self.oldpl > self.halfbit_limit:
ss = int(self.oldsamplenum - self.oldpl/2)
self.putbit(bit, ss, es)
self.last_bit_pos = int(self.samplenum)
else:
if self.last_bit_pos <= self.oldsamplenum - self.oldpl:
ss = int(self.oldsamplenum - self.oldpl)
self.putbit(bit, ss, es)
self.last_bit_pos = int(self.samplenum)
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
# Initialize internal state from the very first sample.
(pin,) = self.wait()
self.oldpin = pin
self.last_samplenum = self.samplenum
self.lastlast_samplenum = self.samplenum
self.last_edge = self.samplenum
self.oldpl = 0
self.oldpp = 0
self.oldsamplenum = 0
self.last_bit_pos = 0
while True:
# Ignore identical samples, only process edges.
(pin,) = self.wait({0: 'e'})
pl = self.samplenum - self.oldsamplenum
pp = pin
self.manchester_decode(pl, pp, pin)
self.oldpl = pl
self.oldpp = pp
self.oldsamplenum = self.samplenum
self.oldpin = pin
|