1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from .lists import *
class Decoder(srd.Decoder):
api_version = 3
id = 'eeprom24xx'
name = '24xx EEPROM'
longname = '24xx I²C EEPROM'
desc = '24xx series I²C EEPROM protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = ['eeprom24xx']
options = (
{'id': 'chip', 'desc': 'Chip', 'default': 'generic',
'values': tuple(chips.keys())},
{'id': 'addr_counter', 'desc': 'Initial address counter value',
'default': 0},
)
annotations = (
# Warnings
('warnings', 'Warnings'),
# Bits/bytes
('control-code', 'Control code'),
('address-pin', 'Address pin (A0/A1/A2)'),
('rw-bit', 'Read/write bit'),
('word-addr-byte', 'Word address byte'),
('data-byte', 'Data byte'),
# Fields
('control-word', 'Control word'),
('word-addr', 'Word address'),
('data', 'Data'),
# Operations
('byte-write', 'Byte write'),
('page-write', 'Page write'),
('cur-addr-read', 'Current address read'),
('random-read', 'Random read'),
('seq-random-read', 'Sequential random read'),
('seq-cur-addr-read', 'Sequential current address read'),
('ack-polling', 'Acknowledge polling'),
('set-bank-addr', 'Set bank address'), # SBA. Only 34AA04.
('read-bank-addr', 'Read bank address'), # RBA. Only 34AA04.
('set-wp', 'Set write protection'), # SWP
('clear-all-wp', 'Clear all write protection'), # CWP
('read-wp', 'Read write protection status'), # RPS
)
annotation_rows = (
('bits-bytes', 'Bits/bytes', (1, 2, 3, 4, 5)),
('fields', 'Fields', (6, 7, 8)),
('ops', 'Operations', tuple(range(9, 21))),
('warnings', 'Warnings', (0,)),
)
binary = (
('binary', 'Binary'),
)
def __init__(self):
self.reset()
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.chip = chips[self.options['chip']]
self.addr_counter = self.options['addr_counter']
def putb(self, data):
self.put(self.ss_block, self.es_block, self.out_ann, data)
def putbin(self, data):
self.put(self.ss_block, self.es_block, self.out_binary, data)
def putbits(self, bit1, bit2, bits, data):
self.put(bits[bit1][1], bits[bit2][2], self.out_ann, data)
def reset(self):
self.state = 'WAIT FOR START'
self.packets = []
self.bytebuf = []
self.is_cur_addr_read = False
self.is_random_access_read = False
self.is_seq_random_read = False
self.is_byte_write = False
self.is_page_write = False
def packet_append(self):
self.packets.append([self.ss, self.es, self.cmd, self.databyte, self.bits])
if self.cmd in ('DATA READ', 'DATA WRITE'):
self.bytebuf.append(self.databyte)
def hexbytes(self, idx):
return ' '.join(['%02X' % b for b in self.bytebuf[idx:]])
def put_control_word(self, bits):
s = ''.join(['%d' % b[0] for b in reversed(bits[4:])])
self.putbits(7, 4, bits, [1, ['Control code bits: ' + s,
'Control code: ' + s, 'Ctrl code: ' + s, 'Ctrl code', 'Ctrl', 'C']])
for i in reversed(range(self.chip['addr_pins'])):
self.putbits(i + 1, i + 1, bits,
[2, ['Address bit %d: %d' % (i, bits[i + 1][0]),
'Addr bit %d' % i, 'A%d' % i, 'A']])
s1 = 'read' if bits[0][0] == 1 else 'write'
s2 = 'R' if bits[0][0] == 1 else 'W'
self.putbits(0, 0, bits, [3, ['R/W bit: ' + s1, 'R/W', 'RW', s2]])
self.putbits(7, 0, bits, [6, ['Control word', 'Control', 'CW', 'C']])
def put_word_addr(self, p):
if self.chip['addr_bytes'] == 1:
a = p[1][3]
self.put(p[1][0], p[1][1], self.out_ann,
[4, ['Word address byte: %02X' % a, 'Word addr byte: %02X' % a,
'Addr: %02X' % a, 'A: %02X' % a, '%02X' % a]])
self.put(p[1][0], p[1][1], self.out_ann, [7, ['Word address',
'Word addr', 'Addr', 'A']])
self.addr_counter = a
else:
a = p[1][3]
self.put(p[1][0], p[1][1], self.out_ann,
[4, ['Word address high byte: %02X' % a,
'Word addr high byte: %02X' % a,
'Addr high: %02X' % a, 'AH: %02X' % a, '%02X' % a]])
a = p[2][3]
self.put(p[2][0], p[2][1], self.out_ann,
[4, ['Word address low byte: %02X' % a,
'Word addr low byte: %02X' % a,
'Addr low: %02X' % a, 'AL: %02X' % a, '%02X' % a]])
self.put(p[1][0], p[2][1], self.out_ann, [7, ['Word address',
'Word addr', 'Addr', 'A']])
self.addr_counter = (p[1][3] << 8) | p[2][3]
def put_data_byte(self, p):
if self.chip['addr_bytes'] == 1:
s = '%02X' % self.addr_counter
else:
s = '%04X' % self.addr_counter
self.put(p[0], p[1], self.out_ann, [5, ['Data byte %s: %02X' % \
(s, p[3]), 'Data byte: %02X' % p[3], \
'Byte: %02X' % p[3], 'DB: %02X' % p[3], '%02X' % p[3]]])
def put_data_bytes(self, idx, cls, s):
for p in self.packets[idx:]:
self.put_data_byte(p)
self.addr_counter += 1
self.put(self.packets[idx][0], self.packets[-1][1], self.out_ann,
[8, ['Data', 'D']])
a = ''.join(['%s' % c[0] for c in s.split()]).upper()
self.putb([cls, ['%s (%s): %s' % (s, self.addr_and_len(), \
self.hexbytes(self.chip['addr_bytes'])),
'%s (%s)' % (s, self.addr_and_len()), s, a, s[0]]])
self.putbin([0, bytes(self.bytebuf[self.chip['addr_bytes']:])])
def addr_and_len(self):
if self.chip['addr_bytes'] == 1:
a = '%02X' % self.bytebuf[0]
else:
a = '%02X%02X' % tuple(self.bytebuf[:2])
num_data_bytes = len(self.bytebuf) - self.chip['addr_bytes']
d = '%d bytes' % num_data_bytes
if num_data_bytes <= 1:
d = d[:-1]
return 'addr=%s, %s' % (a, d)
def decide_on_seq_or_rnd_read(self):
if len(self.bytebuf) < 2:
self.reset()
return
if len(self.bytebuf) == 2:
self.is_random_access_read = True
else:
self.is_seq_random_read = True
def put_operation(self):
idx = 1 + self.chip['addr_bytes']
if self.is_byte_write:
# Byte write: word address, one data byte.
self.put_word_addr(self.packets)
self.put_data_bytes(idx, 9, 'Byte write')
elif self.is_page_write:
# Page write: word address, two or more data bytes.
self.put_word_addr(self.packets)
intitial_addr = self.addr_counter
self.put_data_bytes(idx, 10, 'Page write')
num_bytes_to_write = len(self.packets[idx:])
if num_bytes_to_write > self.chip['page_size']:
self.putb([0, ['Warning: Wrote %d bytes but page size is '
'only %d bytes!' % (num_bytes_to_write,
self.chip['page_size'])]])
page1 = int(intitial_addr / self.chip['page_size'])
page2 = int((self.addr_counter - 1) / self.chip['page_size'])
if page1 != page2:
self.putb([0, ['Warning: Page write crossed page boundary '
'from page %d to %d!' % (page1, page2)]])
elif self.is_cur_addr_read:
# Current address read: no word address, one data byte.
self.put_data_byte(self.packets[1])
self.put(self.packets[1][0], self.packets[-1][1], self.out_ann,
[8, ['Data', 'D']])
self.putb([11, ['Current address read: %02X' % self.bytebuf[0],
'Current address read', 'Cur addr read', 'CAR', 'C']])
self.putbin([0, bytes([self.bytebuf[0]])])
self.addr_counter += 1
elif self.is_random_access_read:
# Random access read: word address, one data byte.
self.put_control_word(self.packets[idx][4])
self.put_word_addr(self.packets)
self.put_data_bytes(idx + 1, 12, 'Random access read')
elif self.is_seq_random_read:
# Sequential random read: word address, two or more data bytes.
self.put_control_word(self.packets[idx][4])
self.put_word_addr(self.packets)
self.put_data_bytes(idx + 1, 13, 'Sequential random read')
def handle_wait_for_start(self):
# Wait for an I²C START condition.
if self.cmd not in ('START', 'START REPEAT'):
return
self.ss_block = self.ss
self.state = 'GET CONTROL WORD'
def handle_get_control_word(self):
# The packet after START must be an ADDRESS READ or ADDRESS WRITE.
if self.cmd not in ('ADDRESS READ', 'ADDRESS WRITE'):
self.reset()
return
self.packet_append()
self.put_control_word(self.bits)
self.state = '%s GET ACK NACK AFTER CONTROL WORD' % self.cmd[8]
def handle_r_get_ack_nack_after_control_word(self):
if self.cmd == 'ACK':
self.state = 'R GET WORD ADDR OR BYTE'
elif self.cmd == 'NACK':
self.es_block = self.es
self.putb([0, ['Warning: No reply from slave!']])
self.reset()
else:
self.reset()
def handle_r_get_word_addr_or_byte(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.putb([0, ['Warning: Slave replied, but master aborted!']])
self.reset()
return
elif self.cmd != 'DATA READ':
self.reset()
return
self.packet_append()
self.state = 'R GET ACK NACK AFTER WORD ADDR OR BYTE'
def handle_r_get_ack_nack_after_word_addr_or_byte(self):
if self.cmd == 'ACK':
self.state = 'R GET RESTART'
elif self.cmd == 'NACK':
self.is_cur_addr_read = True
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_r_get_restart(self):
if self.cmd == 'RESTART':
self.state = 'R READ BYTE'
else:
self.reset()
def handle_r_read_byte(self):
if self.cmd == 'DATA READ':
self.packet_append()
self.state = 'R GET ACK NACK AFTER BYTE WAS READ'
else:
self.reset()
def handle_r_get_ack_nack_after_byte_was_read(self):
if self.cmd == 'ACK':
self.state = 'R READ BYTE'
elif self.cmd == 'NACK':
# It's either a RANDOM READ or a SEQUENTIAL READ.
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_w_get_ack_nack_after_control_word(self):
if self.cmd == 'ACK':
self.state = 'W GET WORD ADDR'
elif self.cmd == 'NACK':
self.es_block = self.es
self.putb([0, ['Warning: No reply from slave!']])
self.reset()
else:
self.reset()
def handle_w_get_word_addr(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.putb([0, ['Warning: Slave replied, but master aborted!']])
self.reset()
return
elif self.cmd != 'DATA WRITE':
self.reset()
return
self.packet_append()
self.state = 'W GET ACK AFTER WORD ADDR'
def handle_w_get_ack_after_word_addr(self):
if self.cmd == 'ACK':
self.state = 'W DETERMINE EEPROM READ OR WRITE'
else:
self.reset()
def handle_w_determine_eeprom_read_or_write(self):
if self.cmd == 'START REPEAT':
# It's either a RANDOM ACCESS READ or SEQUENTIAL RANDOM READ.
self.state = 'R2 GET CONTROL WORD'
elif self.cmd == 'DATA WRITE':
self.packet_append()
self.state = 'W GET ACK NACK AFTER BYTE WAS WRITTEN'
else:
self.reset()
def handle_w_write_byte(self):
if self.cmd == 'DATA WRITE':
self.packet_append()
self.state = 'W GET ACK NACK AFTER BYTE WAS WRITTEN'
elif self.cmd == 'STOP':
if len(self.bytebuf) < 2:
self.reset()
return
self.es_block = self.es
if len(self.bytebuf) == 2:
self.is_byte_write = True
else:
self.is_page_write = True
self.put_operation()
self.reset()
elif self.cmd == 'START REPEAT':
# It's either a RANDOM ACCESS READ or SEQUENTIAL RANDOM READ.
self.state = 'R2 GET CONTROL WORD'
else:
self.reset()
def handle_w_get_ack_nack_after_byte_was_written(self):
if self.cmd == 'ACK':
self.state = 'W WRITE BYTE'
else:
self.reset()
def handle_r2_get_control_word(self):
if self.cmd == 'ADDRESS READ':
self.packet_append()
self.state = 'R2 GET ACK AFTER ADDR READ'
else:
self.reset()
def handle_r2_get_ack_after_addr_read(self):
if self.cmd == 'ACK':
self.state = 'R2 READ BYTE'
else:
self.reset()
def handle_r2_read_byte(self):
if self.cmd == 'DATA READ':
self.packet_append()
self.state = 'R2 GET ACK NACK AFTER BYTE WAS READ'
elif self.cmd == 'STOP':
self.decide_on_seq_or_rnd_read()
self.es_block = self.es
self.putb([0, ['Warning: STOP expected after a NACK (not ACK)']])
self.put_operation()
self.reset()
else:
self.reset()
def handle_r2_get_ack_nack_after_byte_was_read(self):
if self.cmd == 'ACK':
self.state = 'R2 READ BYTE'
elif self.cmd == 'NACK':
self.decide_on_seq_or_rnd_read()
self.state = 'GET STOP AFTER LAST BYTE'
else:
self.reset()
def handle_get_stop_after_last_byte(self):
if self.cmd == 'STOP':
self.es_block = self.es
self.put_operation()
self.reset()
elif self.cmd == 'START REPEAT':
self.es_block = self.es
self.putb([0, ['Warning: STOP expected (not RESTART)']])
self.put_operation()
self.reset()
self.ss_block = self.ss
self.state = 'GET CONTROL WORD'
else:
self.reset()
def decode(self, ss, es, data):
self.cmd, self.databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if self.cmd == 'BITS':
self.bits = self.databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
s = 'handle_%s' % self.state.lower().replace(' ', '_')
handle_state = getattr(self, s)
handle_state()
|