summaryrefslogtreecommitdiff
path: root/decoders/edid/pd.py
blob: 03d5c4d89bfc8257fca54f071bed3707721f259a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012 Bert Vermeulen <bert@biot.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##

# TODO:
#    - EDID < 1.3
#    - add short annotations
#    - Signal level standard field in basic display parameters block
#    - Additional color point descriptors
#    - Additional standard timing descriptors
#    - Extensions

import sigrokdecode as srd
import os

EDID_HEADER = [0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00]
OFF_VENDOR = 8
OFF_VERSION = 18
OFF_BASIC = 20
OFF_CHROM = 25
OFF_EST_TIMING = 35
OFF_STD_TIMING = 38
OFF_DET_TIMING = 54
OFF_NUM_EXT = 126
OFF_CHECKSUM = 127

# Pre-EDID established timing modes
est_modes = [
    '720x400@70Hz',
    '720x400@88Hz',
    '640x480@60Hz',
    '640x480@67Hz',
    '640x480@72Hz',
    '640x480@75Hz',
    '800x600@56Hz',
    '800x600@60Hz',
    '800x600@72Hz',
    '800x600@75Hz',
    '832x624@75Hz',
    '1024x768@87Hz(i)',
    '1024x768@60Hz',
    '1024x768@70Hz',
    '1024x768@75Hz',
    '1280x1024@75Hz',
    '1152x870@75Hz',
]

# X:Y display aspect ratios, as used in standard timing modes
xy_ratio = [
    (16, 10),
    (4, 3),
    (5, 4),
    (16, 9),
]

# Annotation types
ANN_FIELDS = 0
ANN_SECTIONS = 1

class Decoder(srd.Decoder):
    api_version = 2
    id = 'edid'
    name = 'EDID'
    longname = 'Extended Display Identification Data'
    desc = 'Data structure describing display device capabilities.'
    license = 'gplv3+'
    inputs = ['i2c']
    outputs = ['edid']
    annotations = (
        ('fields', 'EDID structure fields'),
        ('sections', 'EDID structure sections'),
    )

    def __init__(self, **kwargs):
        self.state = None
        # Received data items, used as an index into samplenum/data
        self.cnt = 0
        # Start/end sample numbers per data item
        self.sn = []
        # Received data
        self.cache = []

    def start(self):
        self.out_ann = self.register(srd.OUTPUT_ANN)

    def decode(self, ss, es, data):
        cmd, data = data

        # We only care about actual data bytes that are read (for now).
        if cmd != 'DATA READ':
            return

        self.cnt += 1
        self.sn.append([ss, es])
        self.cache.append(data)
        # debug
#        self.put(ss, es, self.out_ann, [0, ['%d: [%.2x]' % (self.cnt, data)]])

        if self.state is None:
            # Wait for the EDID header
            if self.cnt >= OFF_VENDOR:
                if self.cache[-8:] == EDID_HEADER:
                    # Throw away any garbage before the header
                    self.sn = self.sn[-8:]
                    self.cache = self.cache[-8:]
                    self.cnt = 8
                    self.state = 'edid'
                    self.put(ss, es, self.out_ann, [0, ['EDID header']])
        elif self.state == 'edid':
            if self.cnt == OFF_VERSION:
                self.decode_vid(-10)
                self.decode_pid(-8)
                self.decode_serial(-6)
                self.decode_mfrdate(-2)
            elif self.cnt == OFF_BASIC:
                version = 'EDID version: %d.%d' % (self.cache[-2], self.cache[-1])
                self.put(ss, es, self.out_ann, [0, [version]])
            elif self.cnt == OFF_CHROM:
                self.decode_basicdisplay(-5)
            elif self.cnt == OFF_EST_TIMING:
                self.decode_chromaticity(-10)
            elif self.cnt == OFF_STD_TIMING:
                self.decode_est_timing(-3)
            elif self.cnt == OFF_DET_TIMING:
                self.decode_std_timing(-16)
            elif self.cnt == OFF_NUM_EXT:
                self.decode_descriptors(-72)
            elif self.cnt == OFF_CHECKSUM:
                self.put(ss, es, self.out_ann,
                    [0, ['Extensions present: %d' % self.cache[self.cnt-1]]])
            elif self.cnt == OFF_CHECKSUM+1:
                checksum = 0
                for i in range(128):
                    checksum += self.cache[i]
                if checksum % 256 == 0:
                    csstr = 'OK'
                else:
                    csstr = 'WRONG!'
                self.put(ss, es, self.out_ann, [0, ['Checksum: %d (%s)' % (
                         self.cache[self.cnt-1], csstr)]])
                self.state = 'extensions'
        elif self.state == 'extensions':
            pass

    def ann_field(self, start, end, annotation):
        self.put(self.sn[start][0], self.sn[end][1],
                 self.out_ann, [ANN_FIELDS, [annotation]])

    def lookup_pnpid(self, pnpid):
        pnpid_file = os.path.join(os.path.dirname(__file__), 'pnpids.txt')
        if os.path.exists(pnpid_file):
            for line in open(pnpid_file).readlines():
                if line.find(pnpid + ';') == 0:
                    return line[4:].strip()
        return ''

    def decode_vid(self, offset):
        pnpid = chr(64 + ((self.cache[offset] & 0x7c) >> 2))
        pnpid += chr(64 + (((self.cache[offset] & 0x03) << 3)
                           | ((self.cache[offset+1] & 0xe0) >> 5)))
        pnpid += chr(64 + (self.cache[offset+1] & 0x1f))
        vendor = self.lookup_pnpid(pnpid)
        if vendor:
            pnpid += ' (%s)' % vendor
        self.ann_field(offset, offset+1, pnpid)

    def decode_pid(self, offset):
        pidstr = 'Product 0x%.2x%.2x' % (self.cache[offset+1], self.cache[offset])
        self.ann_field(offset, offset+1, pidstr)

    def decode_serial(self, offset):
        serialnum = (self.cache[offset+3] << 24) \
                + (self.cache[offset+2] << 16) \
                + (self.cache[offset+1] << 8) \
                + self.cache[offset]
        serialstr = ''
        is_alnum = True
        for i in range(4):
            if not chr(self.cache[offset+3-i]).isalnum():
                is_alnum = False
                break
            serialstr += chr(self.cache[offset+3-i])
        serial = serialstr if is_alnum else str(serialnum)
        self.ann_field(offset, offset+3, 'Serial ' + serial)

    def decode_mfrdate(self, offset):
        datestr = ''
        if self.cache[offset]:
            datestr += 'week %d, ' % self.cache[offset]
        datestr += str(1990 + self.cache[offset+1])
        if datestr:
            self.ann_field(offset, offset+1, 'Manufactured ' + datestr)

    def decode_basicdisplay(self, offset):
        # Video input definition
        vid = self.cache[offset]
        if vid & 0x80:
            # Digital
            self.ann_field(offset, offset, 'Video input: VESA DFP 1.')
        else:
            # Analog
            sls = (vid & 60) >> 5
            self.ann_field(offset, offset, 'Signal level standard: %.2x' % sls)
            if vid & 0x10:
                self.ann_field(offset, offset, 'Blank-to-black setup expected')
            syncs = ''
            if vid & 0x08:
                syncs += 'separate syncs, '
            if vid & 0x04:
                syncs += 'composite syncs, '
            if vid & 0x02:
                syncs += 'sync on green, '
            if vid & 0x01:
                syncs += 'Vsync serration required, '
            if syncs:
                self.ann_field(offset, offset, 'Supported syncs: %s' % syncs[:-2])
        # Max horizontal/vertical image size
        if self.cache[offset+1] != 0 and self.cache[offset+2] != 0:
            # Projectors have this set to 0
            sizestr = '%dx%dcm' % (self.cache[offset+1], self.cache[offset+2])
            self.ann_field(offset+1, offset+2, 'Physical size: ' + sizestr)
        # Display transfer characteristic (gamma)
        if self.cache[offset+3] != 0xff:
            gamma = (self.cache[offset+3] + 100) / 100
            self.ann_field(offset+3, offset+3, 'Gamma: %1.2f' % gamma)
        # Feature support
        fs = self.cache[offset+4]
        dpms = ''
        if fs & 0x80:
            dpms += 'standby, '
        if fs & 0x40:
            dpms += 'suspend, '
        if fs & 0x20:
            dpms += 'active off, '
        if dpms:
            self.ann_field(offset+4, offset+4, 'DPMS support: %s' % dpms[:-2])
        dt = (fs & 0x18) >> 3
        dtstr = ''
        if dt == 0:
            dtstr = 'Monochrome'
        elif dt == 1:
            dtstr = 'RGB color'
        elif dt == 2:
            dtstr = 'non-RGB multicolor'
        if dtstr:
            self.ann_field(offset+4, offset+4, 'Display type: %s' % dtstr)
        if fs & 0x04:
            self.ann_field(offset+4, offset+4, 'Color space: standard sRGB')
        # Save this for when we decode the first detailed timing descriptor
        self.have_preferred_timing = (fs & 0x02) == 0x02
        if fs & 0x01:
            gft = ''
        else:
            gft = 'not '
        self.ann_field(offset+4, offset+4,
                       'Generalized timing formula: %ssupported' % gft)

    def convert_color(self, value):
        # Convert from 10-bit packet format to float
        outval = 0.0
        for i in range(10):
            if value & 0x01:
                outval += 2 ** -(10-i)
            value >>= 1
        return outval

    def decode_chromaticity(self, offset):
        redx = (self.cache[offset+2] << 2) + ((self.cache[offset] & 0xc0) >> 6)
        redy = (self.cache[offset+3] << 2) + ((self.cache[offset] & 0x30) >> 4)
        self.ann_field(offset, offset+9, 'Chromacity red: X %1.3f, Y %1.3f' % (
                       self.convert_color(redx), self.convert_color(redy)))

        greenx = (self.cache[offset+4] << 2) + ((self.cache[offset] & 0x0c) >> 6)
        greeny = (self.cache[offset+5] << 2) + ((self.cache[offset] & 0x03) >> 4)
        self.ann_field(offset, offset+9, 'Chromacity green: X %1.3f, Y %1.3f' % (
                       self.convert_color(greenx), self.convert_color(greeny)))

        bluex = (self.cache[offset+6] << 2) + ((self.cache[offset+1] & 0xc0) >> 6)
        bluey = (self.cache[offset+7] << 2) + ((self.cache[offset+1] & 0x30) >> 4)
        self.ann_field(offset, offset+9, 'Chromacity blue: X %1.3f, Y %1.3f' % (
                       self.convert_color(bluex), self.convert_color(bluey)))

        whitex = (self.cache[offset+8] << 2) + ((self.cache[offset+1] & 0x0c) >> 6)
        whitey = (self.cache[offset+9] << 2) + ((self.cache[offset+1] & 0x03) >> 4)
        self.ann_field(offset, offset+9, 'Chromacity white: X %1.3f, Y %1.3f' % (
                       self.convert_color(whitex), self.convert_color(whitey)))

    def decode_est_timing(self, offset):
        # Pre-EDID modes
        bitmap = (self.cache[offset] << 9) \
            + (self.cache[offset+1] << 1) \
            + ((self.cache[offset+2] & 0x80) >> 7)
        modestr = ''
        for i in range(17):
                if bitmap & (1 << (16-i)):
                    modestr += est_modes[i] + ', '
        if modestr:
            self.ann_field(offset, offset+2,
                           'Supported establised modes: %s' % modestr[:-2])

    def decode_std_timing(self, offset):
        modestr = ''
        for i in range(0, 16, 2):
            if self.cache[offset+i] == 0x01 and self.cache[offset+i+1] == 0x01:
                # Unused field
                continue
            x = (self.cache[offset+i] + 31) * 8
            ratio = (self.cache[offset+i+1] & 0xc0) >> 6
            ratio_x, ratio_y = xy_ratio[ratio]
            y = x / ratio_x * ratio_y
            refresh = (self.cache[offset+i+1] & 0x3f) + 60
            modestr += '%dx%d@%dHz, ' % (x, y, refresh)
        if modestr:
            self.ann_field(offset, offset+2,
                           'Supported standard modes: %s' % modestr[:-2])

    def decode_detailed_timing(self, offset):
        if offset == -72 and self.have_preferred_timing:
            # Only on first detailed timing descriptor
            section = 'Preferred'
        else:
            section = 'Detailed'
        section += ' timing descriptor'
        self.put(self.sn[offset][0], self.sn[offset+18][1],
             self.out_ann, [ANN_SECTIONS, [section]])

        pixclock = float((self.cache[offset+1] << 8) + self.cache[offset]) / 100
        self.ann_field(offset, offset+1, 'Pixel clock: %.2f MHz' % pixclock)

        horiz_active = ((self.cache[offset+4] & 0xf0) << 4) + self.cache[offset+2]
        self.ann_field(offset+2, offset+4, 'Horizontal active: %d' % horiz_active)

        horiz_blank = ((self.cache[offset+4] & 0x0f) << 8) + self.cache[offset+3]
        self.ann_field(offset+3, offset+4, 'Horizontal blanking: %d' % horiz_blank)

        vert_active = ((self.cache[offset+7] & 0xf0) << 4) + self.cache[offset+5]
        self.ann_field(offset+5, offset+7, 'Vertical active: %d' % vert_active)

        vert_blank = ((self.cache[offset+7] & 0x0f) << 8) + self.cache[offset+6]
        self.ann_field(offset+6, offset+7, 'Vertical blanking: %d' % vert_blank)

        horiz_sync_off = ((self.cache[offset+11] & 0xc0) << 2) + self.cache[offset+8]
        self.ann_field(offset+8, offset+11, 'Horizontal sync offset: %d' % horiz_sync_off)

        horiz_sync_pw = ((self.cache[offset+11] & 0x30) << 4) + self.cache[offset+9]
        self.ann_field(offset+9, offset+11, 'Horizontal sync pulse width: %d' % horiz_sync_pw)

        vert_sync_off = ((self.cache[offset+11] & 0x0c) << 2) \
                    + ((self.cache[offset+10] & 0xf0) >> 4)
        self.ann_field(offset+10, offset+11, 'Vertical sync offset: %d' % vert_sync_off)

        vert_sync_pw = ((self.cache[offset+11] & 0x03) << 4) \
                    + (self.cache[offset+10] & 0x0f)
        self.ann_field(offset+10, offset+11, 'Vertical sync pulse width: %d' % vert_sync_pw)

        horiz_size = ((self.cache[offset+14] & 0xf0) << 4) + self.cache[offset+12]
        vert_size = ((self.cache[offset+14] & 0x0f) << 8) + self.cache[offset+13]
        self.ann_field(offset+12, offset+14, 'Physical size: %dx%dmm' % (horiz_size, vert_size))

        horiz_border = self.cache[offset+15]
        if horiz_border:
            self.ann_field(offset+15, offset+15, 'Horizontal border: %d pixels' % horiz_border)
        vert_border = self.cache[offset+16]
        if vert_border:
            self.ann_field(offset+16, offset+16, 'Vertical border: %d lines' % vert_border)

        features = 'Flags: '
        if self.cache[offset+17] & 0x80:
            features += 'interlaced, '
        stereo = (self.cache[offset+17] & 0x60) >> 5
        if stereo:
            if self.cache[offset+17] & 0x01:
                features += '2-way interleaved stereo ('
                features += ['right image on even lines',
                             'left image on even lines',
                             'side-by-side'][stereo-1]
                features += '), '
            else:
                features += 'field sequential stereo ('
                features += ['right image on sync=1', 'left image on sync=1',
                             '4-way interleaved'][stereo-1]
                features += '), '
        sync = (self.cache[offset+17] & 0x18) >> 3
        sync2 = (self.cache[offset+17] & 0x06) >> 1
        posneg = ['negative', 'positive']
        features += 'sync type '
        if sync == 0x00:
            features += 'analog composite (serrate on RGB)'
        elif sync == 0x01:
            features += 'bipolar analog composite (serrate on RGB)'
        elif sync == 0x02:
            features += 'digital composite (serrate on composite polarity ' \
                        + (posneg[sync2 & 0x01]) + ')'
        elif sync == 0x03:
            features += 'digital separate ('
            features += 'Vsync polarity ' + (posneg[(sync2 & 0x02) >> 1])
            features += ', Hsync polarity ' + (posneg[sync2 & 0x01])
            features += ')'
        features += ', '
        self.ann_field(offset+17, offset+17, features[:-2])

    def decode_descriptor(self, offset):
        tag = self.cache[offset+3]
        if tag == 0xff:
            # Monitor serial number
            text = bytes(self.cache[offset+5:][:13]).decode(encoding='cp437', errors='replace')
            self.ann_field(offset, offset+17, 'Serial number: %s' % text.strip())
        elif tag == 0xfe:
            # Text
            text = bytes(self.cache[offset+5:][:13]).decode(encoding='cp437', errors='replace')
            self.ann_field(offset, offset+17, 'Info: %s' % text.strip())
        elif tag == 0xfc:
            # Monitor name
            text = bytes(self.cache[offset+5:][:13]).decode(encoding='cp437', errors='replace')
            self.ann_field(offset, offset+17, 'Model name: %s' % text.strip())
        elif tag == 0xfd:
            # Monitor range limits
            self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann,
                     [ANN_SECTIONS, ['Monitor range limits']])
            self.ann_field(offset+5, offset+5, 'Minimum vertical rate: %dHz' %
                           self.cache[offset+5])
            self.ann_field(offset+6, offset+6, 'Maximum vertical rate: %dHz' %
                           self.cache[offset+6])
            self.ann_field(offset+7, offset+7, 'Minimum horizontal rate: %dkHz' %
                           self.cache[offset+7])
            self.ann_field(offset+8, offset+8, 'Maximum horizontal rate: %dkHz' %
                           self.cache[offset+8])
            self.ann_field(offset+9, offset+9, 'Maximum pixel clock: %dMHz' %
                           (self.cache[offset+9] * 10))
            if self.cache[offset+10] == 0x02:
                # Secondary GTF curve supported
                self.ann_field(offset+10, offset+17, 'Secondary timing formula supported')
        elif tag == 0xfb:
            # Additional color point data
            self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann,
                     [ANN_SECTIONS, ['Additional color point data']])
        elif tag == 0xfa:
            # Additional standard timing definitions
            self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann,
                     [ANN_SECTIONS, ['Additional standard timing definitions']])
        else:
            self.put(self.sn[offset][0], self.sn[offset+17][1], self.out_ann,
                     [ANN_SECTIONS, ['Unknown descriptor']])

    def decode_descriptors(self, offset):
        # 4 consecutive 18-byte descriptor blocks
        for i in range(offset, 0, 18):
            if self.cache[i] != 0 and self.cache[i+1] != 0:
                self.decode_detailed_timing(i)
            else:
                if self.cache[i+2] == 0 or self.cache[i+4] == 0:
                    self.decode_descriptor(i)