1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2015 Jeremy Swanson <jeremy@rakocontrols.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 2
id = 'dsi'
name = 'DSI'
longname = 'Digital Serial Interface Lighting'
desc = 'DSI lighting control protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['dsi']
channels = (
{'id': 'dsi', 'name': 'DSI', 'desc': 'DSI data line'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-high',
'values': ('active-low', 'active-high')},
)
annotations = (
('bit', 'Bit'),
('startbit', 'Startbit'),
('Level', 'Dimmer level'),
('raw', 'Raw data'),
)
annotation_rows = (
('bits', 'Bits', (0,)),
('raw', 'Raw Data',(3,)),
('fields', 'Fields', (1, 2,)),
)
def __init__(self):
self.samplerate = None
self.samplenum = None
self.edges, self.bits, self.ss_es_bits = [], [], []
self.state = 'IDLE'
self.nextSamplePoint = None
self.nextSample = None
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
self.old_ir = 1 if self.options['polarity'] == 'active-low' else 0
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
# One bit: 1666.7us (one half low, one half high).
# This is how many samples are in 1TE.
self.halfbit = int((self.samplerate * 0.0016667) / 2.0)
def putb(self, bit1, bit2, data):
ss, es = self.ss_es_bits[bit1][0], self.ss_es_bits[bit2][1]
self.put(ss, es, self.out_ann, data)
def handle_bits(self, length):
a, c, f, g, b = 0, 0, 0, 0, self.bits
# Individual raw bits.
for i in range(length):
if i == 0:
ss = max(0, self.bits[0][0])
else:
ss = self.ss_es_bits[i - 1][1]
es = self.bits[i][0] + (self.halfbit * 2)
self.ss_es_bits.append([ss, es])
self.putb(i, i, [0, ['%d' % self.bits[i][1]]])
# Bits[0:0]: Startbit
s = ['Startbit: %d' % b[0][1], 'ST: %d' % b[0][1], 'ST', 'S', 'S']
self.putb(0, 0, [1, s])
self.putb(0, 0, [3, s])
# Bits[1:8]
for i in range(8):
f |= (b[1 + i][1] << (7 - i))
g = f / 2.55
if length == 9: # BACKWARD Frame
s = ['Data: %02X' % f, 'Dat: %02X' % f,
'Dat: %02X' % f, 'D: %02X' % f, 'D']
self.putb(1, 8, [3, s])
s = ['Level: %d%%' % g, 'Lev: %d%%' % g,
'Lev: %d%%' % g, 'L: %d' % g, 'D']
self.putb(1, 8, [2, s])
return
def reset_decoder_state(self):
self.edges, self.bits, self.ss_es_bits = [], [], []
self.state = 'IDLE'
def decode(self, ss, es, data):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
bit = 0;
for (self.samplenum, pins) in data:
self.ir = pins[0]
# data.itercnt += 1
if self.options['polarity'] == 'active-high':
self.ir ^= 1 # Invert.
# State machine.
if self.state == 'IDLE':
# Wait for any edge (rising or falling).
if self.old_ir == self.ir:
continue
# Add in the first half of the start bit.
self.edges.append(self.samplenum - int(self.halfbit))
self.edges.append(self.samplenum)
# Start bit is 0->1.
self.phase0 = self.ir ^ 1
self.state = 'PHASE1'
self.old_ir = self.ir
# Get the next sample point.
# self.nextSamplePoint = self.samplenum + int(self.halfbit / 2)
self.old_ir = self.ir
# bit = self.ir
continue
# if(self.samplenum == self.nextSamplePoint):
# bit = self.ir
# continue
if self.old_ir != self.ir:
self.edges.append(self.samplenum)
elif self.samplenum == (self.edges[-1] + int(self.halfbit * 1.5)):
self.edges.append(self.samplenum - int(self.halfbit * 0.5))
else:
continue
bit = self.old_ir
if self.state == 'PHASE0':
self.phase0 = bit
self.state = 'PHASE1'
elif self.state == 'PHASE1':
if (bit == 1) and (self.phase0 == 1): # Stop bit
if len(self.bits) == 17 or len(self.bits) == 9:
# Forward or Backward
self.handle_bits(len(self.bits))
self.reset_decoder_state() # Reset upon errors.
continue
else:
self.bits.append([self.edges[-3], bit])
self.state = 'PHASE0'
# self.nextSamplePoint = self.edges[-1] + int(self.halfbit / 2)
self.old_ir = self.ir
|