1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2020 Uwe Hermann <uwe@hermann-uwe.de>
## Copyright (C) 2013 Matt Ranostay <mranostay@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import re
import sigrokdecode as srd
from common.srdhelper import bcd2int, SrdIntEnum
days_of_week = (
'Sunday', 'Monday', 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday',
)
regs = (
'Seconds', 'Minutes', 'Hours', 'Day', 'Date', 'Month', 'Year',
'Control', 'RAM',
)
bits = (
'Clock halt', 'Seconds', 'Reserved', 'Minutes', '12/24 hours', 'AM/PM',
'Hours', 'Day', 'Date', 'Month', 'Year', 'OUT', 'SQWE', 'RS', 'RAM',
)
rates = {
0b00: '1Hz',
0b01: '4096Hz',
0b10: '8192Hz',
0b11: '32768Hz',
}
DS1307_I2C_ADDRESS = 0x68
def regs_and_bits():
l = [('reg_' + r.lower(), r + ' register') for r in regs]
l += [('bit_' + re.sub('\/| ', '_', b).lower(), b + ' bit') for b in bits]
return tuple(l)
a = ['REG_' + r.upper() for r in regs] + \
['BIT_' + re.sub('\/| ', '_', b).upper() for b in bits] + \
['READ_DATE_TIME', 'WRITE_DATE_TIME', 'READ_REG', 'WRITE_REG', 'WARNING']
Ann = SrdIntEnum.from_list('Ann', a)
class Decoder(srd.Decoder):
api_version = 3
id = 'ds1307'
name = 'DS1307'
longname = 'Dallas DS1307'
desc = 'Dallas DS1307 realtime clock module protocol.'
license = 'gplv2+'
inputs = ['i2c']
outputs = []
tags = ['Clock/timing', 'IC']
annotations = regs_and_bits() + (
('read_date_time', 'Read date/time'),
('write_date_time', 'Write date/time'),
('read_reg', 'Register read'),
('write_reg', 'Register write'),
('warning', 'Warning'),
)
annotation_rows = (
('bits', 'Bits', Ann.prefixes('BIT_')),
('regs', 'Registers', Ann.prefixes('REG_')),
('date_time', 'Date/time', Ann.prefixes('READ_ WRITE_')),
('warnings', 'Warnings', (Ann.WARNING,)),
)
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.hours = -1
self.minutes = -1
self.seconds = -1
self.days = -1
self.date = -1
self.months = -1
self.years = -1
self.bits = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def putx(self, data):
self.put(self.ss, self.es, self.out_ann, data)
def putd(self, bit1, bit2, data):
self.put(self.bits[bit1][1], self.bits[bit2][2], self.out_ann, data)
def putr(self, bit):
self.put(self.bits[bit][1], self.bits[bit][2], self.out_ann,
[Ann.BIT_RESERVED, ['Reserved bit', 'Reserved', 'Rsvd', 'R']])
def handle_reg_0x00(self, b): # Seconds (0-59) / Clock halt bit
self.putd(7, 0, [Ann.REG_SECONDS, ['Seconds', 'Sec', 'S']])
ch = 1 if (b & (1 << 7)) else 0
self.putd(7, 7, [Ann.BIT_CLOCK_HALT, ['Clock halt: %d' % ch,
'Clk hlt: %d' % ch, 'CH: %d' % ch, 'CH']])
s = self.seconds = bcd2int(b & 0x7f)
self.putd(6, 0, [Ann.BIT_SECONDS, ['Second: %d' % s, 'Sec: %d' % s,
'S: %d' % s, 'S']])
def handle_reg_0x01(self, b): # Minutes (0-59)
self.putd(7, 0, [Ann.REG_MINUTES, ['Minutes', 'Min', 'M']])
self.putr(7)
m = self.minutes = bcd2int(b & 0x7f)
self.putd(6, 0, [Ann.BIT_MINUTES, ['Minute: %d' % m, 'Min: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x02(self, b): # Hours (1-12+AM/PM or 0-23)
self.putd(7, 0, [Ann.REG_HOURS, ['Hours', 'H']])
self.putr(7)
ampm_mode = True if (b & (1 << 6)) else False
if ampm_mode:
self.putd(6, 6, [Ann.BIT_12_24_HOURS, ['12-hour mode', '12h mode', '12h']])
a = 'PM' if (b & (1 << 5)) else 'AM'
self.putd(5, 5, [Ann.BIT_AM_PM, [a, a[0]]])
h = self.hours = bcd2int(b & 0x1f)
self.putd(4, 0, [Ann.BIT_HOURS, ['Hour: %d' % h, 'H: %d' % h, 'H']])
else:
self.putd(6, 6, [Ann.BIT_12_24_HOURS, ['24-hour mode', '24h mode', '24h']])
h = self.hours = bcd2int(b & 0x3f)
self.putd(5, 0, [Ann.BIT_HOURS, ['Hour: %d' % h, 'H: %d' % h, 'H']])
def handle_reg_0x03(self, b): # Day / day of week (1-7)
self.putd(7, 0, [Ann.REG_DAY, ['Day of week', 'Day', 'D']])
for i in (7, 6, 5, 4, 3):
self.putr(i)
w = self.days = bcd2int(b & 0x07)
ws = days_of_week[self.days - 1]
self.putd(2, 0, [Ann.BIT_DAY, ['Weekday: %s' % ws, 'WD: %s' % ws, 'WD', 'W']])
def handle_reg_0x04(self, b): # Date (1-31)
self.putd(7, 0, [Ann.REG_DATE, ['Date', 'D']])
for i in (7, 6):
self.putr(i)
d = self.date = bcd2int(b & 0x3f)
self.putd(5, 0, [Ann.BIT_DATE, ['Date: %d' % d, 'D: %d' % d, 'D']])
def handle_reg_0x05(self, b): # Month (1-12)
self.putd(7, 0, [Ann.REG_MONTH, ['Month', 'Mon', 'M']])
for i in (7, 6, 5):
self.putr(i)
m = self.months = bcd2int(b & 0x1f)
self.putd(4, 0, [Ann.BIT_MONTH, ['Month: %d' % m, 'Mon: %d' % m, 'M: %d' % m, 'M']])
def handle_reg_0x06(self, b): # Year (0-99)
self.putd(7, 0, [Ann.REG_YEAR, ['Year', 'Y']])
y = self.years = bcd2int(b & 0xff)
self.years += 2000
self.putd(7, 0, [Ann.BIT_YEAR, ['Year: %d' % y, 'Y: %d' % y, 'Y']])
def handle_reg_0x07(self, b): # Control Register
self.putd(7, 0, [Ann.REG_CONTROL, ['Control', 'Ctrl', 'C']])
for i in (6, 5, 3, 2):
self.putr(i)
o = 1 if (b & (1 << 7)) else 0
s = 1 if (b & (1 << 4)) else 0
s2 = 'en' if (b & (1 << 4)) else 'dis'
r = rates[b & 0x03]
self.putd(7, 7, [Ann.BIT_OUT, ['Output control: %d' % o,
'OUT: %d' % o, 'O: %d' % o, 'O']])
self.putd(4, 4, [Ann.BIT_SQWE, ['Square wave output: %sabled' % s2,
'SQWE: %sabled' % s2, 'SQWE: %d' % s, 'S: %d' % s, 'S']])
self.putd(1, 0, [Ann.BIT_RS, ['Square wave output rate: %s' % r,
'Square wave rate: %s' % r, 'SQW rate: %s' % r, 'Rate: %s' % r,
'RS: %s' % s, 'RS', 'R']])
def handle_reg_0x3f(self, b): # RAM (bytes 0x08-0x3f)
self.putd(7, 0, [Ann.REG_RAM, ['RAM', 'R']])
self.putd(7, 0, [Ann.BIT_RAM, ['SRAM: 0x%02X' % b, '0x%02X' % b]])
def output_datetime(self, cls, rw):
# TODO: Handle read/write of only parts of these items.
d = '%s, %02d.%02d.%4d %02d:%02d:%02d' % (
days_of_week[self.days - 1], self.date, self.months,
self.years, self.hours, self.minutes, self.seconds)
self.put(self.ss_block, self.es, self.out_ann,
[cls, ['%s date/time: %s' % (rw, d)]])
def handle_reg(self, b):
r = self.reg if self.reg < 8 else 0x3f
fn = getattr(self, 'handle_reg_0x%02x' % r)
fn(b)
# Honor address auto-increment feature of the DS1307. When the
# address reaches 0x3f, it will wrap around to address 0.
self.reg += 1
if self.reg > 0x3f:
self.reg = 0
def is_correct_chip(self, addr):
if addr == DS1307_I2C_ADDRESS:
return True
self.put(self.ss_block, self.es, self.out_ann,
[Ann.WARNING, ['Ignoring non-DS1307 data (slave 0x%02X)' % addr]])
return False
def decode(self, ss, es, data):
cmd, databyte = data
# Collect the 'BITS' packet, then return. The next packet is
# guaranteed to belong to these bits we just stored.
if cmd == 'BITS':
self.bits = databyte
return
# Store the start/end samples of this I²C packet.
self.ss, self.es = ss, es
# State machine.
if self.state == 'IDLE':
# Wait for an I²C START condition.
if cmd != 'START':
return
self.state = 'GET SLAVE ADDR'
self.ss_block = ss
elif self.state == 'GET SLAVE ADDR':
# Wait for an address write operation.
if cmd != 'ADDRESS WRITE':
return
if not self.is_correct_chip(databyte):
self.state = 'IDLE'
return
self.state = 'GET REG ADDR'
elif self.state == 'GET REG ADDR':
# Wait for a data write (master selects the slave register).
if cmd != 'DATA WRITE':
return
self.reg = databyte
self.state = 'WRITE RTC REGS'
elif self.state == 'WRITE RTC REGS':
# If we see a Repeated Start here, it's an RTC read.
if cmd == 'START REPEAT':
self.state = 'READ RTC REGS'
return
# Otherwise: Get data bytes until a STOP condition occurs.
if cmd == 'DATA WRITE':
self.handle_reg(databyte)
elif cmd == 'STOP':
self.output_datetime(Ann.WRITE_DATE_TIME, 'Written')
self.state = 'IDLE'
elif self.state == 'READ RTC REGS':
# Wait for an address read operation.
if cmd != 'ADDRESS READ':
return
if not self.is_correct_chip(databyte):
self.state = 'IDLE'
return
self.state = 'READ RTC REGS2'
elif self.state == 'READ RTC REGS2':
if cmd == 'DATA READ':
self.handle_reg(databyte)
elif cmd == 'STOP':
self.output_datetime(Ann.READ_DATE_TIME, 'Read')
self.state = 'IDLE'
|