1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Jorge Solla Rubiales <jorgesolla@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
from .protocoldata import *
# Pulse types
class Pulse:
INVALID, START, ZERO, ONE = range(4)
# Protocol stats
class Stat:
WAIT_START, GET_BITS, WAIT_EOM, WAIT_ACK = range(4)
# Pulse times in milliseconds
timing = {
Pulse.START: {
'low': { 'min': 3.5, 'max': 3.9 },
'total': { 'min': 4.3, 'max': 4.7 }
},
Pulse.ZERO: {
'low': { 'min': 1.3, 'max': 1.7 },
'total': { 'min': 2.05, 'max': 2.75 }
},
Pulse.ONE: {
'low': { 'min': 0.4, 'max': 0.8 },
'total': { 'min': 2.05, 'max': 2.75 }
}
}
class ChannelError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'cec'
name = 'CEC'
longname = 'HDMI-CEC'
desc = 'HDMI Consumer Electronics Control (CEC) protocol.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['Display', 'PC']
channels = (
{'id': 'cec', 'name': 'CEC', 'desc': 'CEC bus data'},
)
annotations = (
('st', 'Start'),
('eom-0', 'End of message'),
('eom-1', 'Message continued'),
('nack', 'ACK not set'),
('ack', 'ACK set'),
('bits', 'Bits'),
('bytes', 'Bytes'),
('frames', 'Frames'),
('sections', 'Sections'),
('warnings', 'Warnings')
)
annotation_rows = (
('bits', 'Bits', (0, 1, 2, 3, 4, 5)),
('bytes', 'Bytes', (6,)),
('frames', 'Frames', (7,)),
('sections', 'Sections', (8,)),
('warnings', 'Warnings', (9,))
)
def __init__(self):
self.reset()
def precalculate(self):
# Restrict max length of ACK/NACK labels to 2 BIT pulses.
bit_time = timing[Pulse.ZERO]['total']['min'] * 2
self.max_ack_len_samples = round((bit_time / 1000) * self.samplerate)
def reset(self):
self.stat = Stat.WAIT_START
self.samplerate = None
self.fall_start = None
self.fall_end = None
self.rise = None
self.reset_frame_vars()
def reset_frame_vars(self):
self.eom = None
self.bit_count = 0
self.byte_count = 0
self.byte = 0
self.byte_start = None
self.frame_start = None
self.frame_end = None
self.is_nack = 0
self.cmd_bytes = []
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
self.precalculate()
def handle_frame(self, is_nack):
if self.fall_start is None or self.fall_end is None:
return
i = 0
string = ''
while i < len(self.cmd_bytes):
string += '{:02x}'.format(self.cmd_bytes[i]['val'])
if i != (len(self.cmd_bytes) - 1):
string += ':'
i += 1
self.put(self.frame_start, self.frame_end, self.out_ann, [7, [string]])
i = 0
operands = 0
string = ''
while i < len(self.cmd_bytes):
if i == 0: # Parse header
(src, dst) = decode_header(self.cmd_bytes[i]['val'])
string = 'HDR: ' + src + ', ' + dst
elif i == 1: # Parse opcode
string += ' | OPC: ' + opcodes.get(self.cmd_bytes[i]['val'], 'Invalid')
else: # Parse operands
if operands == 0:
string += ' | OPS: '
operands += 1
string += '0x{:02x}'.format(self.cmd_bytes[i]['val'])
if i != len(self.cmd_bytes) - 1:
string += ', '
i += 1
# Header only commands are PINGS
if i == 1:
string += ' | OPC: PING' if self.eom else ' | OPC: NONE. Aborted cmd'
# Add extra information (ack of the command from the destination)
string += ' | R: NACK' if is_nack else ' | R: ACK'
self.put(self.frame_start, self.frame_end, self.out_ann, [8, [string]])
def process(self):
zero_time = ((self.rise - self.fall_start) / self.samplerate) * 1000.0
total_time = ((self.fall_end - self.fall_start) / self.samplerate) * 1000.0
pulse = Pulse.INVALID
# VALIDATION: Identify pulse based on length of the low period
for key in timing:
if zero_time >= timing[key]['low']['min'] and zero_time <= timing[key]['low']['max']:
pulse = key
break
# VALIDATION: Invalid pulse
if pulse == Pulse.INVALID:
self.stat = Stat.WAIT_START
self.put(self.fall_start, self.fall_end, self.out_ann, [9, ['Invalid pulse: Wrong timing']])
return
# VALIDATION: If waiting for start, discard everything else
if self.stat == Stat.WAIT_START and pulse != Pulse.START:
self.put(self.fall_start, self.fall_end, self.out_ann, [9, ['Expected START: BIT found']])
return
# VALIDATION: If waiting for ACK or EOM, only BIT pulses (0/1) are expected
if (self.stat == Stat.WAIT_ACK or self.stat == Stat.WAIT_EOM) and pulse == Pulse.START:
self.put(self.fall_start, self.fall_end, self.out_ann, [9, ['Expected BIT: START received)']])
self.stat = Stat.WAIT_START
# VALIDATION: ACK bit pulse remains high till the next frame (if any): Validate only min time of the low period
if self.stat == Stat.WAIT_ACK and pulse != Pulse.START:
if total_time < timing[pulse]['total']['min']:
pulse = Pulse.INVALID
self.put(self.fall_start, self.fall_end, self.out_ann, [9, ['ACK pulse below minimun time']])
self.stat = Stat.WAIT_START
return
# VALIDATION / PING FRAME DETECTION: Initiator doesn't sets the EOM = 1 but stops sending when ack doesn't arrive
if self.stat == Stat.GET_BITS and pulse == Pulse.START:
# Make sure we received a complete byte to consider it a valid ping
if self.bit_count == 0:
self.handle_frame(self.is_nack)
else:
self.put(self.frame_start, self.samplenum, self.out_ann, [9, ['ERROR: Incomplete byte received']])
# Set wait start so we receive next frame
self.stat = Stat.WAIT_START
# VALIDATION: Check timing of the BIT (0/1) pulse in any other case (not waiting for ACK)
if self.stat != Stat.WAIT_ACK and pulse != Pulse.START:
if total_time < timing[pulse]['total']['min'] or total_time > timing[pulse]['total']['max']:
self.put(self.fall_start, self.fall_end, self.out_ann, [9, ['Bit pulse exceeds total pulse timespan']])
pulse = Pulse.INVALID
self.stat = Stat.WAIT_START
return
if pulse == Pulse.ZERO:
bit = 0
elif pulse == Pulse.ONE:
bit = 1
# STATE: WAIT START
if self.stat == Stat.WAIT_START:
self.stat = Stat.GET_BITS
self.reset_frame_vars()
self.put(self.fall_start, self.fall_end, self.out_ann, [0, ['ST']])
# STATE: GET BITS
elif self.stat == Stat.GET_BITS:
# Reset stats on first bit
if self.bit_count == 0:
self.byte_start = self.fall_start
self.byte = 0
# If 1st byte of the datagram save its sample num
if len(self.cmd_bytes) == 0:
self.frame_start = self.fall_start
self.byte += (bit << (7 - self.bit_count))
self.bit_count += 1
self.put(self.fall_start, self.fall_end, self.out_ann, [5, [str(bit)]])
if self.bit_count == 8:
self.bit_count = 0
self.byte_count += 1
self.stat = Stat.WAIT_EOM
self.put(self.byte_start, self.samplenum, self.out_ann, [6, ['0x{:02x}'.format(self.byte)]])
self.cmd_bytes.append({'st': self.byte_start, 'ed': self.samplenum, 'val': self.byte})
# STATE: WAIT EOM
elif self.stat == Stat.WAIT_EOM:
self.eom = bit
self.frame_end = self.fall_end
a = [2, ['EOM=Y']] if self.eom else [1, ['EOM=N']]
self.put(self.fall_start, self.fall_end, self.out_ann, a)
self.stat = Stat.WAIT_ACK
# STATE: WAIT ACK
elif self.stat == Stat.WAIT_ACK:
# If a frame with broadcast destination is being sent, the ACK is
# inverted: a 0 is considered a NACK, therefore we invert the value
# of the bit here, so we match the real meaning of it.
if (self.cmd_bytes[0]['val'] & 0x0F) == 0x0F:
bit = ~bit & 0x01
if (self.fall_end - self.fall_start) > self.max_ack_len_samples:
ann_end = self.fall_start + self.max_ack_len_samples
else:
ann_end = self.fall_end
if bit:
# Any NACK detected in the frame is enough to consider the
# whole frame NACK'd.
self.is_nack = 1
self.put(self.fall_start, ann_end, self.out_ann, [3, ['NACK']])
else:
self.put(self.fall_start, ann_end, self.out_ann, [4, ['ACK']])
# After ACK bit, wait for new datagram or continue reading current
# one based on EOM value.
if self.eom or self.is_nack:
self.stat = Stat.WAIT_START
self.handle_frame(self.is_nack)
else:
self.stat = Stat.GET_BITS
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
# Wait for first falling edge.
self.wait({0: 'f'})
self.fall_end = self.samplenum
while True:
self.wait({0: 'r'})
self.rise = self.samplenum
if self.stat == Stat.WAIT_ACK:
self.wait([{0: 'f'}, {'skip': self.max_ack_len_samples}])
else:
self.wait([{0: 'f'}])
self.fall_start = self.fall_end
self.fall_end = self.samplenum
self.process()
# If there was a timeout while waiting for ACK: RESYNC.
# Note: This is an expected situation as no new falling edge will
# happen until next frame is transmitted.
if self.matched == (False, True):
self.wait({0: 'f'})
self.fall_end = self.samplenum
|