1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2012-2013 Uwe Hermann <uwe@hermann-uwe.de>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 1
id = 'can'
name = 'CAN'
longname = 'Controller Area Network'
desc = 'Field bus protocol for distributed realtime control.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['can']
probes = (
{'id': 'can_rx', 'name': 'CAN RX', 'desc': 'CAN bus line'},
)
options = (
{'id': 'bitrate', 'desc': 'Bitrate', 'default': 1000000}, # 1Mbit/s
{'id': 'sample_point', 'desc': 'Sample point', 'default': 70}, # 70%
)
annotations = (
('data', 'CAN payload data'),
('sof', 'Start of frame'),
('eof', 'End of frame'),
('id', 'Identifier'),
('ext-id', 'Extended identifier'),
('full-id', 'Full identifier'),
('ide', 'Identifier extension bit'),
('reserved-bit', 'Reserved bit 0 and 1'),
('rtr', 'Remote transmission request'),
('srr', 'Substitute remote request'),
('dlc', 'Data length count'),
('crc-sequence', 'CRC sequence'),
('crc-delimiter', 'CRC delimiter'),
('ack-slot', 'ACK slot'),
('ack-delimiter', 'ACK delimiter'),
('stuff-bit', 'Stuff bit'),
('warnings', 'Human-readable warnings'),
)
def __init__(self, **kwargs):
self.samplerate = None
self.reset_variables()
def start(self):
# self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
self.bit_width = float(self.samplerate) / float(self.options['bitrate'])
self.bitpos = (self.bit_width / 100.0) * self.options['sample_point']
# Generic helper for CAN bit annotations.
def putg(self, ss, es, data):
left, right = int(self.bitpos), int(self.bit_width - self.bitpos)
self.put(ss - left, es + right, self.out_ann, data)
# Single-CAN-bit annotation using the current samplenum.
def putx(self, data):
self.putg(self.samplenum, self.samplenum, data)
# Single-CAN-bit annotation using the samplenum of CAN bit 12.
def put12(self, data):
self.putg(self.ss_bit12, self.ss_bit12, data)
# Multi-CAN-bit annotation from self.ss_block to current samplenum.
def putb(self, data):
self.putg(self.ss_block, self.samplenum, data)
def reset_variables(self):
self.state = 'IDLE'
self.sof = self.frame_type = self.dlc = None
self.rawbits = [] # All bits, including stuff bits
self.bits = [] # Only actual CAN frame bits (no stuff bits)
self.curbit = 0 # Current bit of CAN frame (bit 0 == SOF)
self.last_databit = 999 # Positive value that bitnum+x will never match
self.ss_block = None
self.ss_bit12 = None
self.ss_databytebits = []
# Return True if we reached the desired bit position, False otherwise.
def reached_bit(self, bitnum):
bitpos = int(self.sof + (self.bit_width * bitnum) + self.bitpos)
if self.samplenum >= bitpos:
return True
return False
def is_stuff_bit(self):
# CAN uses NRZ encoding and bit stuffing.
# After 5 identical bits, a stuff bit of opposite value is added.
last_6_bits = self.rawbits[-6:]
if last_6_bits not in ([0, 0, 0, 0, 0, 1], [1, 1, 1, 1, 1, 0]):
return False
# Stuff bit. Keep it in self.rawbits, but drop it from self.bits.
self.putx([15, ['Stuff bit: %d' % self.rawbits[-1],
'SB: %d' % self.rawbits[-1], 'SB']])
self.bits.pop() # Drop last bit.
return True
def is_valid_crc(self, crc_bits):
return True # TODO
def decode_error_frame(self, bits):
pass # TODO
def decode_overload_frame(self, bits):
pass # TODO
# Both standard and extended frames end with CRC, CRC delimiter, ACK,
# ACK delimiter, and EOF fields. Handle them in a common function.
# Returns True if the frame ended (EOF), False otherwise.
def decode_frame_end(self, can_rx, bitnum):
# Remember start of CRC sequence (see below).
if bitnum == (self.last_databit + 1):
self.ss_block = self.samplenum
# CRC sequence (15 bits)
elif bitnum == (self.last_databit + 15):
x = self.last_databit + 1
crc_bits = self.bits[x:x + 15 + 1]
self.crc = int(''.join(str(d) for d in crc_bits), 2)
self.putb([11, ['CRC sequence: 0x%04x' % self.crc,
'CRC: 0x%04x' % self.crc, 'CRC']])
if not self.is_valid_crc(crc_bits):
self.putb([16, ['CRC is invalid']])
# CRC delimiter bit (recessive)
elif bitnum == (self.last_databit + 16):
self.putx([12, ['CRC delimiter: %d' % can_rx,
'CRC d: %d' % can_rx, 'CRC d']])
# ACK slot bit (dominant: ACK, recessive: NACK)
elif bitnum == (self.last_databit + 17):
ack = 'ACK' if can_rx == 0 else 'NACK'
self.putx([13, ['ACK slot: %s' % ack, 'ACK s: %s' % ack, 'ACK s']])
# ACK delimiter bit (recessive)
elif bitnum == (self.last_databit + 18):
self.putx([14, ['ACK delimiter: %d' % can_rx,
'ACK d: %d' % can_rx, 'ACK d']])
# Remember start of EOF (see below).
elif bitnum == (self.last_databit + 19):
self.ss_block = self.samplenum
# End of frame (EOF), 7 recessive bits
elif bitnum == (self.last_databit + 25):
self.putb([2, ['End of frame', 'EOF', 'E']])
self.reset_variables()
return True
return False
# Returns True if the frame ended (EOF), False otherwise.
def decode_standard_frame(self, can_rx, bitnum):
# Bit 14: RB0 (reserved bit)
# Has to be sent dominant, but receivers should accept recessive too.
if bitnum == 14:
self.putx([7, ['Reserved bit 0: %d' % can_rx,
'RB0: %d' % can_rx, 'RB0']])
# Bit 12: Remote transmission request (RTR) bit
# Data frame: dominant, remote frame: recessive
# Remote frames do not contain a data field.
rtr = 'remote' if self.bits[12] == 1 else 'data'
self.put12([8, ['Remote transmission request: %s frame' % rtr,
'RTR: %s frame' % rtr, 'RTR']])
# Remember start of DLC (see below).
elif bitnum == 15:
self.ss_block = self.samplenum
# Bits 15-18: Data length code (DLC), in number of bytes (0-8).
elif bitnum == 18:
self.dlc = int(''.join(str(d) for d in self.bits[15:18 + 1]), 2)
self.putb([10, ['Data length code: %d' % self.dlc,
'DLC: %d' % self.dlc, 'DLC']])
self.last_databit = 18 + (self.dlc * 8)
# Remember all databyte bits, except the very last one.
elif bitnum in range(19, self.last_databit):
self.ss_databytebits.append(self.samplenum)
# Bits 19-X: Data field (0-8 bytes, depending on DLC)
# The bits within a data byte are transferred MSB-first.
elif bitnum == self.last_databit:
self.ss_databytebits.append(self.samplenum) # Last databyte bit.
for i in range(self.dlc):
x = 18 + (8 * i) + 1
b = int(''.join(str(d) for d in self.bits[x:x + 8]), 2)
ss = self.ss_databytebits[i * 8]
es = self.ss_databytebits[((i + 1) * 8) - 1]
self.putg(ss, es, [0, ['Data byte %d: 0x%02x' % (i, b),
'DB %d: 0x%02x' % (i, b), 'DB']])
self.ss_databytebits = []
elif bitnum > self.last_databit:
return self.decode_frame_end(can_rx, bitnum)
return False
# Returns True if the frame ended (EOF), False otherwise.
def decode_extended_frame(self, can_rx, bitnum):
# Remember start of EID (see below).
if bitnum == 14:
self.ss_block = self.samplenum
# Bits 14-31: Extended identifier (EID[17..0])
elif bitnum == 31:
self.eid = int(''.join(str(d) for d in self.bits[14:]), 2)
s = '%d (0x%x)' % (self.eid, self.eid)
self.putb([4, ['Extended Identifier: %s' % s,
'Extended ID: %s' % s, 'Extended ID', 'EID']])
self.fullid = self.id << 18 | self.eid
s = '%d (0x%x)' % (self.fullid, self.fullid)
self.putb([5, ['Full Identifier: %s' % s, 'Full ID: %s' % s,
'Full ID', 'FID']])
# Bit 12: Substitute remote request (SRR) bit
self.put12([9, ['Substitute remote request: %d' % self.bits[12],
'SRR: %d' % self.bits[12], 'SRR']])
# Bit 32: Remote transmission request (RTR) bit
# Data frame: dominant, remote frame: recessive
# Remote frames do not contain a data field.
if bitnum == 32:
rtr = 'remote' if can_rx == 1 else 'data'
self.putx([8, ['Remote transmission request: %s frame' % rtr,
'RTR: %s frame' % rtr, 'RTR']])
# Bit 33: RB1 (reserved bit)
elif bitnum == 33:
self.putx([7, ['Reserved bit 1: %d' % can_rx,
'RB1: %d' % can_rx, 'RB1']])
# Bit 34: RB0 (reserved bit)
elif bitnum == 34:
self.putx([7, ['Reserved bit 0: %d' % can_rx,
'RB0: %d' % can_rx, 'RB0']])
# Remember start of DLC (see below).
elif bitnum == 35:
self.ss_block = self.samplenum
# Bits 35-38: Data length code (DLC), in number of bytes (0-8).
elif bitnum == 38:
self.dlc = int(''.join(str(d) for d in self.bits[35:38 + 1]), 2)
self.putb([10, ['Data length code: %d' % self.dlc,
'DLC: %d' % self.dlc, 'DLC']])
self.last_databit = 38 + (self.dlc * 8)
# Remember all databyte bits, except the very last one.
elif bitnum in range(39, self.last_databit):
self.ss_databytebits.append(self.samplenum)
# Bits 39-X: Data field (0-8 bytes, depending on DLC)
# The bits within a data byte are transferred MSB-first.
elif bitnum == self.last_databit:
self.ss_databytebits.append(self.samplenum) # Last databyte bit.
for i in range(self.dlc):
x = 38 + (8 * i) + 1
b = int(''.join(str(d) for d in self.bits[x:x + 8]), 2)
ss = self.ss_databytebits[i * 8]
es = self.ss_databytebits[((i + 1) * 8) - 1]
self.putg(ss, es, [0, ['Data byte %d: 0x%02x' % (i, b),
'DB %d: 0x%02x' % (i, b), 'DB']])
self.ss_databytebits = []
elif bitnum > self.last_databit:
return self.decode_frame_end(can_rx, bitnum)
return False
def handle_bit(self, can_rx):
self.rawbits.append(can_rx)
self.bits.append(can_rx)
# Get the index of the current CAN frame bit (without stuff bits).
bitnum = len(self.bits) - 1
# For debugging.
# self.putx([0, ['Bit %d (CAN bit %d): %d' % \
# (self.curbit, bitnum, can_rx)]])
# If this is a stuff bit, remove it from self.bits and ignore it.
if self.is_stuff_bit():
self.curbit += 1 # Increase self.curbit (bitnum is not affected).
return
# Bit 0: Start of frame (SOF) bit
if bitnum == 0:
if can_rx == 0:
self.putx([1, ['Start of frame', 'SOF', 'S']])
else:
self.putx([16, ['Start of frame (SOF) must be a dominant bit']])
# Remember start of ID (see below).
elif bitnum == 1:
self.ss_block = self.samplenum
# Bits 1-11: Identifier (ID[10..0])
# The bits ID[10..4] must NOT be all recessive.
elif bitnum == 11:
self.id = int(''.join(str(d) for d in self.bits[1:]), 2)
s = '%d (0x%x)' % (self.id, self.id),
self.putb([3, ['Identifier: %s' % s, 'ID: %s' % s, 'ID']])
# RTR or SRR bit, depending on frame type (gets handled later).
elif bitnum == 12:
# self.putx([0, ['RTR/SRR: %d' % can_rx]]) # Debug only.
self.ss_bit12 = self.samplenum
# Bit 13: Identifier extension (IDE) bit
# Standard frame: dominant, extended frame: recessive
elif bitnum == 13:
ide = self.frame_type = 'standard' if can_rx == 0 else 'extended'
self.putx([6, ['Identifier extension bit: %s frame' % ide,
'IDE: %s frame' % ide, 'IDE']])
# Bits 14-X: Frame-type dependent, passed to the resp. handlers.
elif bitnum >= 14:
if self.frame_type == 'standard':
done = self.decode_standard_frame(can_rx, bitnum)
else:
done = self.decode_extended_frame(can_rx, bitnum)
# The handlers return True if a frame ended (EOF).
if done:
return
# After a frame there are 3 intermission bits (recessive).
# After these bits, the bus is considered free.
self.curbit += 1
def decode(self, ss, es, data):
if self.samplerate is None:
raise Exception("Cannot decode without samplerate.")
for (self.samplenum, pins) in data:
(can_rx,) = pins
# State machine.
if self.state == 'IDLE':
# Wait for a dominant state (logic 0) on the bus.
if can_rx == 1:
continue
self.sof = self.samplenum
self.state = 'GET BITS'
elif self.state == 'GET BITS':
# Wait until we're in the correct bit/sampling position.
if not self.reached_bit(self.curbit):
continue
self.handle_bit(can_rx)
else:
raise Exception("Invalid state: %s" % self.state)
|