1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2018 Michalis Pappas <mpappas@fastmail.fm>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
WORD_ADDR_RESET = 0x00
WORD_ADDR_SLEEP = 0x01
WORD_ADDR_IDLE = 0x02
WORD_ADDR_COMMAND = 0x03
WORD_ADDR = {0x00: 'RESET', 0x01: 'SLEEP', 0x02: 'IDLE', 0x03: 'COMMAND'}
OPCODE_DERIVE_KEY = 0x1c
OPCODE_DEV_REV = 0x30
OPCODE_GEN_DIG = 0x15
OPCODE_HMAC = 0x11
OPCODE_CHECK_MAC = 0x28
OPCODE_LOCK = 0x17
OPCODE_MAC = 0x08
OPCODE_NONCE = 0x16
OPCODE_PAUSE = 0x01
OPCODE_RANDOM = 0x1b
OPCODE_READ = 0x02
OPCODE_SHA = 0x47
OPCODE_UPDATE_EXTRA = 0x20
OPCODE_WRITE = 0x12
OPCODES = {
0x01: 'Pause',
0x02: 'Read',
0x08: 'MAC',
0x11: 'HMAC',
0x12: 'Write',
0x15: 'GenDig',
0x16: 'Nonce',
0x17: 'Lock',
0x1b: 'Random',
0x1c: 'DeriveKey',
0x20: 'UpdateExtra',
0x28: 'CheckMac',
0x30: 'DevRev',
0x47: 'SHA',
}
ZONE_CONFIG = 0x00
ZONE_OTP = 0x01
ZONE_DATA = 0x02
ZONES = {0x00: 'CONFIG', 0x01: 'OTP', 0x02: 'DATA'}
STATUS_SUCCESS = 0x00
STATUS_CHECKMAC_FAIL = 0x01
STATUS_PARSE_ERROR = 0x03
STATUS_EXECUTION_ERROR = 0x0f
STATUS_READY = 0x11
STATUS_CRC_COMM_ERROR = 0xff
STATUS = {
0x00: 'Command success',
0x01: 'Checkmac failure',
0x03: 'Parse error',
0x0f: 'Execution error',
0x11: 'Ready',
0xff: 'CRC / communications error',
}
class Decoder(srd.Decoder):
api_version = 3
id = 'atsha204a'
name = 'ATSHA204A'
longname = 'Microchip ATSHA204A'
desc = 'Microchip ATSHA204A CryptoAuthentication device.'
license = 'gplv2+'
inputs = ['i2c']
outputs = ['atsha204a']
annotations = (
('waddr', 'Word address'),
('count', 'Count'),
('opcode', 'Opcode'),
('param1', 'Param1'),
('param2', 'Param2'),
('data', 'Data'),
('crc', 'CRC'),
('status', 'Status'),
('warning', 'Warning'),
)
annotation_rows = (
('frame', 'Frame', (0, 1, 2, 3, 4, 5, 6)),
('status', 'Status', (7,)),
('warnings', 'Warnings', (8,)),
)
def __init__(self):
self.reset()
def reset(self):
self.state = 'IDLE'
self.waddr = self.opcode = -1
self.ss_block = self.es_block = 0
self.bytes = []
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def output_tx_bytes(self):
b = self.bytes
if len(b) < 1: # Ignore wakeup.
return
self.waddr = b[0][2]
self.put_waddr(b[0])
if self.waddr == WORD_ADDR_COMMAND:
count = b[1][2]
self.put_count(b[1])
if len(b) - 1 != count:
self.put_warning(b[0][0], b[-1][1],
'Invalid frame length: Got {}, expecting {} '.format(
len(b) - 1, count))
return
self.opcode = b[2][2]
self.put_opcode(b[2])
self.put_param1(b[3])
self.put_param2([b[4], b[5]])
self.put_data(b[6:-2])
self.put_crc([b[-2], b[-1]])
def output_rx_bytes(self):
b = self.bytes
count = b[0][2]
self.put_count(b[0])
if self.waddr == WORD_ADDR_RESET:
self.put_data([b[1]])
self.put_crc([b[2], b[3]])
self.put_status(b[0][0], b[-1][1], b[1][2])
elif self.waddr == WORD_ADDR_COMMAND:
if count == 4: # Status / Error.
self.put_data([b[1]])
self.put_crc([b[2], b[3]])
self.put_status(b[0][0], b[-1][1], b[1][2])
else:
self.put_data(b[1:-2])
self.put_crc([b[-2], b[-1]])
def putx(self, s, data):
self.put(s[0], s[1], self.out_ann, data)
def puty(self, s, data):
self.put(s[0][0], s[1][1], self.out_ann, data)
def putz(self, ss, es, data):
self.put(ss, es, self.out_ann, data)
def put_waddr(self, s):
self.putx(s, [0, ['Word addr: %s' % WORD_ADDR[s[2]]]])
def put_count(self, s):
self.putx(s, [1, ['Count: %s' % s[2]]])
def put_opcode(self, s):
self.putx(s, [2, ['Opcode: %s' % OPCODES[s[2]]]])
def put_param1(self, s):
op = self.opcode
if op in (OPCODE_CHECK_MAC, OPCODE_DEV_REV, OPCODE_HMAC, \
OPCODE_MAC, OPCODE_NONCE, OPCODE_RANDOM, OPCODE_SHA):
self.putx(s, [3, ['Mode: %02X' % s[2]]])
elif op == OPCODE_DERIVE_KEY:
self.putx(s, [3, ['Random: %s' % s[2]]])
elif op == OPCODE_GEN_DIG:
self.putx(s, [3, ['Zone: %s' % ZONES[s[2]]]])
elif op == OPCODE_LOCK:
self.putx(s, [3, ['Zone: {}, Summary: {}'.format(
'DATA/OTP' if s[2] else 'CONFIG',
'Ignored' if s[2] & 0x80 else 'Used')]])
elif op == OPCODE_PAUSE:
self.putx(s, [3, ['Selector: %02X' % s[2]]])
elif op == OPCODE_READ:
self.putx(s, [3, ['Zone: {}, Length: {}'.format(ZONES[s[2] & 0x03],
'32 bytes' if s[2] & 0x90 else '4 bytes')]])
elif op == OPCODE_WRITE:
self.putx(s, [3, ['Zone: {}, Encrypted: {}, Length: {}'.format(ZONES[s[2] & 0x03],
'Yes' if s[2] & 0x40 else 'No', '32 bytes' if s[2] & 0x90 else '4 bytes')]])
else:
self.putx(s, [3, ['Param1: %02X' % s[2]]])
def put_param2(self, s):
op = self.opcode
if op == OPCODE_DERIVE_KEY:
self.puty(s, [4, ['TargetKey: {:02x} {:02x}'.format(s[1][2], s[0][2])]])
elif op in (OPCODE_NONCE, OPCODE_PAUSE, OPCODE_RANDOM):
self.puty(s, [4, ['Zero: {:02x} {:02x}'.format(s[1][2], s[0][2])]])
elif op in (OPCODE_HMAC, OPCODE_MAC, OPCODE_CHECK_MAC, OPCODE_GEN_DIG):
self.puty(s, [4, ['SlotID: {:02x} {:02x}'.format(s[1][2], s[0][2])]])
elif op == OPCODE_LOCK:
self.puty(s, [4, ['Summary: {:02x} {:02x}'.format(s[1][2], s[0][2])]])
elif op in (OPCODE_READ, OPCODE_WRITE):
self.puty(s, [4, ['Address: {:02x} {:02x}'.format(s[1][2], s[0][2])]])
elif op == OPCODE_UPDATE_EXTRA:
self.puty(s, [4, ['NewValue: {:02x}'.format(s[0][2])]])
else:
self.puty(s, [4, ['-']])
def put_data(self, s):
if len(s) == 0:
return
op = self.opcode
if op == OPCODE_CHECK_MAC:
self.putz(s[0][0], s[31][1], [5, ['ClientChal: %s' % ' '.join(format(i[2], '02x') for i in s[0:31])]])
self.putz(s[32][0], s[63][1], [5, ['ClientResp: %s' % ' '.join(format(i[2], '02x') for i in s[32:63])]])
self.putz(s[64][0], s[76][1], [5, ['OtherData: %s' % ' '.join(format(i[2], '02x') for i in s[64:76])]])
elif op == OPCODE_DERIVE_KEY:
self.putz(s[0][0], s[31][1], [5, ['MAC: %s' % ' '.join(format(i[2], '02x') for i in s)]])
elif op == OPCODE_GEN_DIG:
self.putz(s[0][0], s[3][1], [5, ['OtherData: %s' % ' '.join(format(i[2], '02x') for i in s)]])
elif op == OPCODE_MAC:
self.putz(s[0][0], s[31][1], [5, ['Challenge: %s' % ' '.join(format(i[2], '02x') for i in s)]])
elif op == OPCODE_WRITE:
if len(s) > 32: # Value + MAC.
self.putz(s[0][0], s[-31][1], [5, ['Value: %s' % ' '.join(format(i[2], '02x') for i in s)]])
self.putz(s[-32][0], s[-1][1], [5, ['MAC: %s' % ' '.join(format(i[2], '02x') for i in s)]])
else: # Just value.
self.putz(s[0][0], s[-1][1], [5, ['Value: %s' % ' '.join(format(i[2], '02x') for i in s)]])
else:
self.putz(s[0][0], s[-1][1], [5, ['Data: %s' % ' '.join(format(i[2], '02x') for i in s)]])
def put_crc(self, s):
self.puty(s, [6, ['CRC: {:02X} {:02X}'.format(s[0][2], s[1][2])]])
def put_status(self, ss, es, status):
self.putz(ss, es, [7, ['Status: %s' % STATUS[status]]])
def put_warning(self, ss, es, msg):
self.putz(ss, es, [8, ['Warning: %s' % msg]])
def decode(self, ss, es, data):
cmd, databyte = data
# State machine.
if self.state == 'IDLE':
# Wait for an I²C START condition.
if cmd != 'START':
return
self.state = 'GET SLAVE ADDR'
self.ss_block = ss
elif self.state == 'GET SLAVE ADDR':
# Wait for an address read/write operation.
if cmd == 'ADDRESS READ':
self.state = 'READ REGS'
elif cmd == 'ADDRESS WRITE':
self.state = 'WRITE REGS'
elif self.state == 'READ REGS':
if cmd == 'DATA READ':
self.bytes.append([ss, es, databyte])
elif cmd == 'STOP':
self.es_block = es
# Reset the opcode before received data, as this causes
# responses to be displayed incorrectly.
self.opcode = -1
self.output_rx_bytes()
self.waddr = -1
self.bytes = []
self.state = 'IDLE'
elif self.state == 'WRITE REGS':
if cmd == 'DATA WRITE':
self.bytes.append([ss, es, databyte])
elif cmd == 'STOP':
self.es_block = es
self.output_tx_bytes()
self.bytes = []
self.state = 'IDLE'
|