1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2017 Gerhard Sittig <gerhard.sittig@gmx.net>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
# This implementation is incomplete. TODO items:
# - Support the optional RESET# pin, detect cold and warm reset.
# - Split slot values into audio samples of their respective width and
# frequency (either on user provided parameters, or from inspection of
# decoded register access).
import sigrokdecode as srd
class ChannelError(Exception):
pass
class Pins:
(SYNC, BIT_CLK, SDATA_OUT, SDATA_IN, RESET) = range(5)
class Ann:
(
BITS_OUT, BITS_IN,
SLOT_OUT_RAW, SLOT_OUT_TAG, SLOT_OUT_ADDR, SLOT_OUT_DATA,
SLOT_OUT_03, SLOT_OUT_04, SLOT_OUT_05, SLOT_OUT_06,
SLOT_OUT_07, SLOT_OUT_08, SLOT_OUT_09, SLOT_OUT_10,
SLOT_OUT_11, SLOT_OUT_IO,
SLOT_IN_RAW, SLOT_IN_TAG, SLOT_IN_ADDR, SLOT_IN_DATA,
SLOT_IN_03, SLOT_IN_04, SLOT_IN_05, SLOT_IN_06,
SLOT_IN_07, SLOT_IN_08, SLOT_IN_09, SLOT_IN_10,
SLOT_IN_11, SLOT_IN_IO,
WARN, ERROR,
) = range(32)
(
BIN_FRAME_OUT,
BIN_FRAME_IN,
BIN_SLOT_RAW_OUT,
BIN_SLOT_RAW_IN,
) = range(4)
class Decoder(srd.Decoder):
api_version = 3
id = 'ac97'
name = "AC '97"
longname = "Audio Codec '97"
desc = 'Audio and modem control for PC systems.'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['Audio', 'PC']
channels = (
{'id': 'sync', 'name': 'SYNC', 'desc': 'Frame synchronization'},
{'id': 'clk', 'name': 'BIT_CLK', 'desc': 'Data bits clock'},
)
optional_channels = (
{'id': 'out', 'name': 'SDATA_OUT', 'desc': 'Data output'},
{'id': 'in', 'name': 'SDATA_IN', 'desc': 'Data input'},
{'id': 'rst', 'name': 'RESET#', 'desc': 'Reset line'},
)
annotations = (
('bit-out', 'Output bit'),
('bit-in', 'Input bit'),
('slot-out-raw', 'Output raw value'),
('slot-out-tag', 'Output TAG'),
('slot-out-cmd-addr', 'Output command address'),
('slot-out-cmd-data', 'Output command data'),
('slot-out-03', 'Output slot 3'),
('slot-out-04', 'Output slot 4'),
('slot-out-05', 'Output slot 5'),
('slot-out-06', 'Output slot 6'),
('slot-out-07', 'Output slot 7'),
('slot-out-08', 'Output slot 8'),
('slot-out-09', 'Output slot 9'),
('slot-out-10', 'Output slot 10'),
('slot-out-11', 'Output slot 11'),
('slot-out-io-ctrl', 'Output I/O control'),
('slot-in-raw', 'Input raw value'),
('slot-in-tag', 'Input TAG'),
('slot-in-sts-addr', 'Input status address'),
('slot-in-sts-data', 'Input status data'),
('slot-in-03', 'Input slot 3'),
('slot-in-04', 'Input slot 4'),
('slot-in-05', 'Input slot 5'),
('slot-in-06', 'Input slot 6'),
('slot-in-07', 'Input slot 7'),
('slot-in-08', 'Input slot 8'),
('slot-in-09', 'Input slot 9'),
('slot-in-10', 'Input slot 10'),
('slot-in-11', 'Input slot 11'),
('slot-in-io-sts', 'Input I/O status'),
# TODO: Add more annotation classes:
# TAG: 'ready', 'valid', 'id', 'rsv'
# CMD ADDR: 'r/w', 'addr', 'unused'
# CMD DATA: 'data', 'unused'
# 3-11: 'data', 'unused', 'double data'
('warning', 'Warning'),
('error', 'Error'),
)
annotation_rows = (
('bits-out', 'Output bits', (Ann.BITS_OUT,)),
('slots-out-raw', 'Output numbers', (Ann.SLOT_OUT_RAW,)),
('slots-out', 'Output slots', (
Ann.SLOT_OUT_TAG, Ann.SLOT_OUT_ADDR, Ann.SLOT_OUT_DATA,
Ann.SLOT_OUT_03, Ann.SLOT_OUT_04, Ann.SLOT_OUT_05, Ann.SLOT_OUT_06,
Ann.SLOT_OUT_07, Ann.SLOT_OUT_08, Ann.SLOT_OUT_09, Ann.SLOT_OUT_10,
Ann.SLOT_OUT_11, Ann.SLOT_OUT_IO,)),
('bits-in', 'Input bits', (Ann.BITS_IN,)),
('slots-in-raw', 'Input numbers', (Ann.SLOT_IN_RAW,)),
('slots-in', 'Input slots', (
Ann.SLOT_IN_TAG, Ann.SLOT_IN_ADDR, Ann.SLOT_IN_DATA,
Ann.SLOT_IN_03, Ann.SLOT_IN_04, Ann.SLOT_IN_05, Ann.SLOT_IN_06,
Ann.SLOT_IN_07, Ann.SLOT_IN_08, Ann.SLOT_IN_09, Ann.SLOT_IN_10,
Ann.SLOT_IN_11, Ann.SLOT_IN_IO,)),
('warnings', 'Warnings', (Ann.WARN,)),
('errors', 'Errors', (Ann.ERROR,)),
)
binary = (
('frame-out', 'Frame bits, output data'),
('frame-in', 'Frame bits, input data'),
('slot-raw-out', 'Raw slot bits, output data'),
('slot-raw-in', 'Raw slot bits, input data'),
# TODO: Which (other) binary classes to implement?
# - Are binary annotations per audio slot useful?
# - Assume 20bit per slot, in 24bit units? Or assume 16bit
# audio samples? Observe register access and derive width
# of the audio data? Dump channels 3-11 or 1-12?
)
def putx(self, ss, es, cls, data):
self.put(ss, es, self.out_ann, [cls, data])
def putf(self, frombit, bitcount, cls, data):
ss = self.frame_ss_list[frombit]
es = self.frame_ss_list[frombit + bitcount]
self.putx(ss, es, cls, data)
def putb(self, frombit, bitcount, cls, data):
ss = self.frame_ss_list[frombit]
es = self.frame_ss_list[frombit + bitcount]
self.put(ss, es, self.out_binary, [cls, data])
def __init__(self):
self.reset()
def reset(self):
self.frame_ss_list = None
self.frame_slot_lens = [0, 16] + [16 + 20 * i for i in range(1, 13)]
self.frame_total_bits = self.frame_slot_lens[-1]
self.handle_slots = {
0: self.handle_slot_00,
1: self.handle_slot_01,
2: self.handle_slot_02,
}
def start(self):
self.out_binary = self.register(srd.OUTPUT_BINARY)
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def bits_to_int(self, bits):
# Convert MSB-first bit sequence to integer value.
if not bits:
return 0
count = len(bits)
value = sum([2 ** (count - 1 - i) for i in range(count) if bits[i]])
return value
def bits_to_bin_ann(self, bits):
# Convert MSB-first bit sequence to binary annotation data.
# It's assumed that the number of bits does not (in useful ways)
# fit into an integer, and we need to create an array of bytes
# from the data afterwards, anyway. Hence the separate routine
# and the conversion of eight bits each.
out = []
count = len(bits)
while count > 0:
count -= 8
by, bits = bits[:8], bits[8:]
by = self.bits_to_int(by)
out.append(by)
out = bytes(out)
return out
def int_to_nibble_text(self, value, bitcount):
# Convert number to hex digits for given bit count.
digits = (bitcount + 3) // 4
text = '{{:0{:d}x}}'.format(digits).format(value)
return text
def get_bit_field(self, data, size, off, count):
shift = size - off - count
data >>= shift
mask = (1 << count) - 1
data &= mask
return data
def flush_frame_bits(self):
# Flush raw frame bits to binary annotation.
anncls = Ann.BIN_FRAME_OUT
data = self.frame_bits_out[:]
count = len(data)
data = self.bits_to_bin_ann(data)
self.putb(0, count, anncls, data)
anncls = Ann.BIN_FRAME_IN
data = self.frame_bits_in[:]
count = len(data)
data = self.bits_to_bin_ann(data)
self.putb(0, count, anncls, data)
def start_frame(self, ss):
# Mark the start of a frame.
if self.frame_ss_list:
# Flush bits if we had a frame before the frame which is
# starting here.
self.flush_frame_bits()
self.frame_ss_list = [ss]
self.frame_bits_out = []
self.frame_bits_in = []
self.frame_slot_data_out = []
self.frame_slot_data_in = []
self.have_slots = {True: None, False: None}
def handle_slot_dummy(self, slotidx, bitidx, bitcount, is_out, data):
# Handle slot x, default/fallback handler.
# Only process data of slots 1-12 when slot 0 says "valid".
if not self.have_slots[is_out]:
return
if not self.have_slots[is_out][slotidx]:
return
# Emit a naive annotation with just the data bits that we saw
# for the slot (hex nibbles for density). For audio data this
# can be good enough. Slots with special meaning should not end
# up calling the dummy handler.
text = self.int_to_nibble_text(data, bitcount)
anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
self.putf(bitidx, bitcount, anncls + slotidx, [text])
# Emit binary output for the data that is contained in slots
# which end up calling the default handler. This transparently
# should translate to "the slots with audio data", as other
# slots which contain management data should have their specific
# handler routines. In the present form, this approach might be
# good enough to get a (header-less) audio stream for typical
# setups where only line-in or line-out are in use.
#
# TODO: Improve this early prototype implementation. For now the
# decoder just exports the upper 16 bits of each audio channel
# that happens to be valid. For an improved implementation, it
# either takes user provided specs or more smarts like observing
# register access (if the capture includes it).
anncls = Ann.BIN_SLOT_RAW_OUT if is_out else Ann.BIN_SLOT_RAW_IN
data_bin = data >> 4
data_bin &= 0xffff
data_bin = data_bin.to_bytes(2, byteorder = 'big')
self.putb(bitidx, bitcount, anncls, data_bin)
def handle_slot_00(self, slotidx, bitidx, bitcount, is_out, data):
# Handle slot 0, TAG.
slotpos = self.frame_slot_lens[slotidx]
fieldoff = 0
anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
fieldlen = 1
ready = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
text = ['READY: 1', 'READY', 'RDY', 'R'] if ready else ['ready: 0', 'rdy', '-']
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
fieldoff += fieldlen
fieldlen = 12
valid = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
text = ['VALID: {:3x}'.format(valid), '{:3x}'.format(valid)]
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
have_slots = [True] + [False] * 12
for idx in range(12):
have_slots[idx + 1] = bool(valid & (1 << (11 - idx)))
self.have_slots[is_out] = have_slots
fieldoff += fieldlen
fieldlen = 1
rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
if rsv != 0:
text = ['reserved bit error', 'rsv error', 'rsv']
self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
fieldoff += fieldlen
# TODO: Will input slot 0 have a Codec ID, or 3 reserved bits?
fieldlen = 2
codec = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
text = ['CODEC: {:1x}'.format(codec), '{:1x}'.format(codec)]
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
fieldoff += fieldlen
def handle_slot_01(self, slotidx, bitidx, bitcount, is_out, data):
# Handle slot 1, command/status address.
slotpos = self.frame_slot_lens[slotidx]
if not self.have_slots[is_out]:
return
if not self.have_slots[is_out][slotidx]:
return
fieldoff = 0
anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
anncls += slotidx
fieldlen = 1
if is_out:
is_read = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
text = ['READ', 'RD', 'R'] if is_read else ['WRITE', 'WR', 'W']
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
# TODO: Check for the "atomic" constraint? Some operations
# involve address _and_ data, which cannot be spread across
# several frames. Slot 0 and 1 _must_ be provided within the
# same frame (the test should occur in the handler for slot
# 2 of course, in slot 1 we don't know what will follow).
else:
rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
if rsv != 0:
text = ['reserved bit error', 'rsv error', 'rsv']
self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
fieldoff += fieldlen
fieldlen = 7
regaddr = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
# TODO: Present 0-63 or 0-126 as the address of the 16bit register?
text = ['ADDR: {:2x}'.format(regaddr), '{:2x}'.format(regaddr)]
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
if regaddr & 0x01:
text = ['odd register address', 'odd reg addr', 'odd addr', 'odd']
self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
fieldoff += fieldlen
# Strictly speaking there are 10 data request bits and 2 reserved
# bits for input slots, and 12 reserved bits for output slots. We
# test for 10 and 2 bits, to simplify the logic. Only in case of
# non-zero reserved bits for outputs this will result in "a little
# strange" an annotation. This is a cosmetic issue, we don't mind.
fieldlen = 10
reqdata = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
if is_out and reqdata != 0:
text = ['reserved bit error', 'rsv error', 'rsv']
self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
if not is_out:
text = ['REQ: {:3x}'.format(reqdata), '{:3x}'.format(reqdata)]
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
fieldoff += fieldlen
fieldlen = 2
rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
if rsv != 0:
text = ['reserved bit error', 'rsv error', 'rsv']
self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
fieldoff += fieldlen
def handle_slot_02(self, slotidx, bitidx, bitcount, is_out, data):
# Handle slot 2, command/status data.
slotpos = self.frame_slot_lens[slotidx]
if not self.have_slots[is_out]:
return
if not self.have_slots[is_out][slotidx]:
return
fieldoff = 0
anncls = Ann.SLOT_OUT_TAG if is_out else Ann.SLOT_IN_TAG
anncls += slotidx
fieldlen = 16
rwdata = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
# TODO: Check for zero output data when the operation is a read.
# TODO: Check for the "atomic" constraint.
text = ['DATA: {:4x}'.format(rwdata), '{:4x}'.format(rwdata)]
self.putf(slotpos + fieldoff, fieldlen, anncls, text)
fieldoff += fieldlen
fieldlen = 4
rsv = self.get_bit_field(data, bitcount, fieldoff, fieldlen)
if rsv != 0:
text = ['reserved bits error', 'rsv error', 'rsv']
self.putf(slotpos + fieldoff, fieldlen, Ann.ERROR, text)
fieldoff += fieldlen
# TODO: Implement other slots.
# - 1: cmd/status addr (check status vs command)
# - 2: cmd/status data (check status vs command)
# - 3-11: audio out/in
# - 12: io control/status (modem GPIO(?))
def handle_slot(self, slotidx, data_out, data_in):
# Process a received slot of a frame.
func = self.handle_slots.get(slotidx, self.handle_slot_dummy)
bitidx = self.frame_slot_lens[slotidx]
bitcount = self.frame_slot_lens[slotidx + 1] - bitidx
if data_out is not None:
func(slotidx, bitidx, bitcount, True, data_out)
if data_in is not None:
func(slotidx, bitidx, bitcount, False, data_in)
def handle_bits(self, ss, es, bit_out, bit_in):
# Process a received pair of bits.
# Emit the bits' annotations. Only interpret the data when we
# are in a frame (have seen the start of the frame, and don't
# exceed the expected number of bits in a frame).
if bit_out is not None:
self.putx(ss, es, Ann.BITS_OUT, ['{:d}'.format(bit_out)])
if bit_in is not None:
self.putx(ss, es, Ann.BITS_IN, ['{:d}'.format(bit_in)])
if self.frame_ss_list is None:
return
self.frame_ss_list.append(es)
have_len = len(self.frame_ss_list) - 1
if have_len > self.frame_total_bits:
return
# Accumulate the bits within the frame, until one slot of the
# frame has become available.
slot_idx = 0
if bit_out is not None:
self.frame_bits_out.append(bit_out)
slot_idx = len(self.frame_slot_data_out)
if bit_in is not None:
self.frame_bits_in.append(bit_in)
slot_idx = len(self.frame_slot_data_in)
want_len = self.frame_slot_lens[slot_idx + 1]
if have_len != want_len:
return
prev_len = self.frame_slot_lens[slot_idx]
# Convert bits to integer values. This shall simplify extraction
# of bit fields in multiple other locations.
slot_data_out = None
if bit_out is not None:
slot_bits = self.frame_bits_out[prev_len:]
slot_data = self.bits_to_int(slot_bits)
self.frame_slot_data_out.append(slot_data)
slot_data_out = slot_data
slot_data_in = None
if bit_in is not None:
slot_bits = self.frame_bits_in[prev_len:]
slot_data = self.bits_to_int(slot_bits)
self.frame_slot_data_in.append(slot_data)
slot_data_in = slot_data
# Emit simple annotations for the integer values, until upper
# layer decode stages will be implemented.
slot_len = have_len - prev_len
slot_ss = self.frame_ss_list[prev_len]
slot_es = self.frame_ss_list[have_len]
if slot_data_out is not None:
slot_text = self.int_to_nibble_text(slot_data_out, slot_len)
self.putx(slot_ss, slot_es, Ann.SLOT_OUT_RAW, [slot_text])
if slot_data_in is not None:
slot_text = self.int_to_nibble_text(slot_data_in, slot_len)
self.putx(slot_ss, slot_es, Ann.SLOT_IN_RAW, [slot_text])
self.handle_slot(slot_idx, slot_data_out, slot_data_in)
def decode(self):
have_sdo = self.has_channel(Pins.SDATA_OUT)
have_sdi = self.has_channel(Pins.SDATA_IN)
if not have_sdo and not have_sdi:
raise ChannelError('Either SDATA_OUT or SDATA_IN (or both) are required.')
have_reset = self.has_channel(Pins.RESET)
# Data is sampled at falling CLK edges. Annotations need to span
# the period between rising edges. SYNC rises one cycle _before_
# the start of a frame. Grab the earliest SYNC sample we can get
# and advance to the start of a bit time. Then keep getting the
# samples and the end of all subsequent bit times.
prev_sync = [None, None, None]
pins = self.wait({Pins.BIT_CLK: 'e'})
if pins[Pins.BIT_CLK] == 0:
prev_sync[-1] = pins[Pins.SYNC]
pins = self.wait({Pins.BIT_CLK: 'r'})
bit_ss = self.samplenum
while True:
pins = self.wait({Pins.BIT_CLK: 'f'})
prev_sync.pop(0)
prev_sync.append(pins[Pins.SYNC])
self.wait({Pins.BIT_CLK: 'r'})
if prev_sync[0] == 0 and prev_sync[1] == 1:
self.start_frame(bit_ss)
self.handle_bits(bit_ss, self.samplenum,
pins[Pins.SDATA_OUT] if have_sdo else None,
pins[Pins.SDATA_IN] if have_sdi else None)
bit_ss = self.samplenum
|