summaryrefslogtreecommitdiff
path: root/decoders/spiflash/pd.py
diff options
context:
space:
mode:
Diffstat (limited to 'decoders/spiflash/pd.py')
-rw-r--r--decoders/spiflash/pd.py407
1 files changed, 407 insertions, 0 deletions
diff --git a/decoders/spiflash/pd.py b/decoders/spiflash/pd.py
new file mode 100644
index 0000000..6b46ad1
--- /dev/null
+++ b/decoders/spiflash/pd.py
@@ -0,0 +1,407 @@
+##
+## This file is part of the libsigrokdecode project.
+##
+## Copyright (C) 2011-2015 Uwe Hermann <uwe@hermann-uwe.de>
+##
+## This program is free software; you can redistribute it and/or modify
+## it under the terms of the GNU General Public License as published by
+## the Free Software Foundation; either version 2 of the License, or
+## (at your option) any later version.
+##
+## This program is distributed in the hope that it will be useful,
+## but WITHOUT ANY WARRANTY; without even the implied warranty of
+## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+## GNU General Public License for more details.
+##
+## You should have received a copy of the GNU General Public License
+## along with this program; if not, write to the Free Software
+## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+##
+
+import sigrokdecode as srd
+
+# Dict which maps command IDs to their names and descriptions.
+cmds = {
+ 0x06: ('WREN', 'Write enable'),
+ 0x04: ('WRDI', 'Write disable'),
+ 0x9f: ('RDID', 'Read identification'),
+ 0x05: ('RDSR', 'Read status register'),
+ 0x01: ('WRSR', 'Write status register'),
+ 0x03: ('READ', 'Read data'),
+ 0x0b: ('FAST/READ', 'Fast read data'),
+ 0xbb: ('2READ', '2x I/O read'),
+ 0x20: ('SE', 'Sector erase'),
+ 0xd8: ('BE', 'Block erase'),
+ 0x60: ('CE', 'Chip erase'),
+ 0xc7: ('CE2', 'Chip erase'), # Alternative command ID
+ 0x02: ('PP', 'Page program'),
+ 0xad: ('CP', 'Continuously program mode'),
+ 0xb9: ('DP', 'Deep power down'),
+ 0xab: ('RDP/RES', 'Release from deep powerdown / Read electronic ID'),
+ 0x90: ('REMS', 'Read electronic manufacturer & device ID'),
+ 0xef: ('REMS2', 'Read ID for 2x I/O mode'),
+ 0xb1: ('ENSO', 'Enter secured OTP'),
+ 0xc1: ('EXSO', 'Exit secured OTP'),
+ 0x2b: ('RDSCUR', 'Read security register'),
+ 0x2f: ('WRSCUR', 'Write security register'),
+ 0x70: ('ESRY', 'Enable SO to output RY/BY#'),
+ 0x80: ('DSRY', 'Disable SO to output RY/BY#'),
+}
+
+device_name = {
+ 0x14: 'MX25L1605D',
+ 0x15: 'MX25L3205D',
+ 0x16: 'MX25L6405D',
+}
+
+def cmd_annotation_classes():
+ return tuple([tuple([cmd[0].lower(), cmd[1]]) for cmd in cmds.values()])
+
+def decode_status_reg(data):
+ # TODO: Additional per-bit(s) self.put() calls with correct start/end.
+
+ # Bits[0:0]: WIP (write in progress)
+ s = 'W' if (data & (1 << 0)) else 'No w'
+ ret = '%srite operation in progress.\n' % s
+
+ # Bits[1:1]: WEL (write enable latch)
+ s = '' if (data & (1 << 1)) else 'not '
+ ret += 'Internal write enable latch is %sset.\n' % s
+
+ # Bits[5:2]: Block protect bits
+ # TODO: More detailed decoding (chip-dependent).
+ ret += 'Block protection bits (BP3-BP0): 0x%x.\n' % ((data & 0x3c) >> 2)
+
+ # Bits[6:6]: Continuously program mode (CP mode)
+ s = '' if (data & (1 << 6)) else 'not '
+ ret += 'Device is %sin continuously program mode (CP mode).\n' % s
+
+ # Bits[7:7]: SRWD (status register write disable)
+ s = 'not ' if (data & (1 << 7)) else ''
+ ret += 'Status register writes are %sallowed.\n' % s
+
+ return ret
+
+class Decoder(srd.Decoder):
+ api_version = 2
+ id = 'spiflash'
+ name = 'SPI flash'
+ longname = 'SPI flash chips'
+ desc = 'xx25 series SPI (NOR) flash chip protocol.'
+ license = 'gplv2+'
+ inputs = ['logic']
+ outputs = ['spiflash']
+ annotations = cmd_annotation_classes() + (
+ ('bits', 'Bits'),
+ ('bits2', 'Bits2'),
+ ('warnings', 'Warnings'),
+ )
+ annotation_rows = (
+ ('bits', 'Bits', (24, 25)),
+ ('commands', 'Commands', tuple(range(23 + 1))),
+ ('warnings', 'Warnings', (26,)),
+ )
+
+ def __init__(self, **kwargs):
+ self.state = None
+ self.cmdstate = 1
+ self.addr = 0
+ self.data = []
+
+ def start(self):
+ self.out_ann = self.register(srd.OUTPUT_ANN)
+
+ def putx(self, data):
+ # Simplification, most annotations span exactly one SPI byte/packet.
+ self.put(self.ss, self.es, self.out_ann, data)
+
+ def putb(self, data):
+ self.put(self.block_ss, self.block_es, self.out_ann, data)
+
+ def handle_wren(self, mosi, miso):
+ self.putx([0, ['Command: %s' % cmds[self.state][1]]])
+ self.state = None
+
+ def handle_wrdi(self, mosi, miso):
+ pass # TODO
+
+ # TODO: Check/display device ID / name
+ def handle_rdid(self, mosi, miso):
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.ss_block = self.ss
+ self.putx([2, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate == 2:
+ # Byte 2: Slave sends the JEDEC manufacturer ID.
+ self.putx([2, ['Manufacturer ID: 0x%02x' % miso]])
+ elif self.cmdstate == 3:
+ # Byte 3: Slave sends the memory type (0x20 for this chip).
+ self.putx([2, ['Memory type: 0x%02x' % miso]])
+ elif self.cmdstate == 4:
+ # Byte 4: Slave sends the device ID.
+ self.device_id = miso
+ self.putx([2, ['Device ID: 0x%02x' % miso]])
+
+ if self.cmdstate == 4:
+ # TODO: Check self.device_id is valid & exists in device_names.
+ # TODO: Same device ID? Check!
+ d = 'Device: Macronix %s' % device_name[self.device_id]
+ self.put(self.ss_block, self.es, self.out_ann, [0, [d]])
+ self.state = None
+ else:
+ self.cmdstate += 1
+
+ def handle_rdsr(self, mosi, miso):
+ # Read status register: Master asserts CS#, sends RDSR command,
+ # reads status register byte. If CS# is kept asserted, the status
+ # register can be read continuously / multiple times in a row.
+ # When done, the master de-asserts CS# again.
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.putx([3, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate >= 2:
+ # Bytes 2-x: Slave sends status register as long as master clocks.
+ if self.cmdstate <= 3: # TODO: While CS# asserted.
+ self.putx([24, ['Status register: 0x%02x' % miso]])
+ self.putx([25, [decode_status_reg(miso)]])
+
+ if self.cmdstate == 3: # TODO: If CS# got de-asserted.
+ self.state = None
+ return
+
+ self.cmdstate += 1
+
+ def handle_wrsr(self, mosi, miso):
+ pass # TODO
+
+ def handle_read(self, mosi, miso):
+ # Read data bytes: Master asserts CS#, sends READ command, sends
+ # 3-byte address, reads >= 1 data bytes, de-asserts CS#.
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.putx([5, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate in (2, 3, 4):
+ # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
+ self.addr |= (mosi << ((4 - self.cmdstate) * 8))
+ # self.putx([0, ['Read address, byte %d: 0x%02x' % \
+ # (4 - self.cmdstate, mosi)]])
+ if self.cmdstate == 4:
+ self.putx([24, ['Read address: 0x%06x' % self.addr]])
+ self.addr = 0
+ elif self.cmdstate >= 5:
+ # Bytes 5-x: Master reads data bytes (until CS# de-asserted).
+ # TODO: For now we hardcode 256 bytes per READ command.
+ if self.cmdstate <= 256 + 4: # TODO: While CS# asserted.
+ self.data.append(miso)
+ # self.putx([0, ['New read byte: 0x%02x' % miso]])
+
+ if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted.
+ # s = ', '.join(map(hex, self.data))
+ s = ''.join(map(chr, self.data))
+ self.putx([24, ['Read data']])
+ self.putx([25, ['Read data: %s' % s]])
+ self.data = []
+ self.state = None
+ return
+
+ self.cmdstate += 1
+
+ def handle_fast_read(self, mosi, miso):
+ # Fast read: Master asserts CS#, sends FAST READ command, sends
+ # 3-byte address + 1 dummy byte, reads >= 1 data bytes, de-asserts CS#.
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.putx([5, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate in (2, 3, 4):
+ # Bytes 2/3/4: Master sends read address (24bits, MSB-first).
+ self.putx([24, ['AD%d: 0x%02x' % (self.cmdstate - 1, mosi)]])
+ if self.cmdstate == 2:
+ self.block_ss = self.ss
+ self.addr |= (mosi << ((4 - self.cmdstate) * 8))
+ elif self.cmdstate == 5:
+ self.putx([24, ['Dummy byte: 0x%02x' % mosi]])
+ self.block_es = self.es
+ self.putb([5, ['Read address: 0x%06x' % self.addr]])
+ self.addr = 0
+ elif self.cmdstate >= 6:
+ # Bytes 6-x: Master reads data bytes (until CS# de-asserted).
+ # TODO: For now we hardcode 32 bytes per FAST READ command.
+ if self.cmdstate == 6:
+ self.block_ss = self.ss
+ if self.cmdstate <= 32 + 5: # TODO: While CS# asserted.
+ self.data.append(miso)
+ if self.cmdstate == 32 + 5: # TODO: If CS# got de-asserted.
+ self.block_es = self.es
+ s = ' '.join([hex(b)[2:] for b in self.data])
+ self.putb([25, ['Read data: %s' % s]])
+ self.data = []
+ self.state = None
+ return
+
+ self.cmdstate += 1
+
+ def handle_2read(self, mosi, miso):
+ pass # TODO
+
+ # TODO: Warn/abort if we don't see the necessary amount of bytes.
+ # TODO: Warn if WREN was not seen before.
+ def handle_se(self, mosi, miso):
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.addr = 0
+ self.ss_block = self.ss
+ self.putx([8, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate in (2, 3, 4):
+ # Bytes 2/3/4: Master sends sector address (24bits, MSB-first).
+ self.addr |= (mosi << ((4 - self.cmdstate) * 8))
+ # self.putx([0, ['Sector address, byte %d: 0x%02x' % \
+ # (4 - self.cmdstate, mosi)]])
+
+ if self.cmdstate == 4:
+ d = 'Erase sector %d (0x%06x)' % (self.addr, self.addr)
+ self.put(self.ss_block, self.es, self.out_ann, [24, [d]])
+ # TODO: Max. size depends on chip, check that too if possible.
+ if self.addr % 4096 != 0:
+ # Sector addresses must be 4K-aligned (same for all 3 chips).
+ d = 'Warning: Invalid sector address!'
+ self.put(self.ss_block, self.es, self.out_ann, [101, [d]])
+ self.state = None
+ else:
+ self.cmdstate += 1
+
+ def handle_be(self, mosi, miso):
+ pass # TODO
+
+ def handle_ce(self, mosi, miso):
+ pass # TODO
+
+ def handle_ce2(self, mosi, miso):
+ pass # TODO
+
+ def handle_pp(self, mosi, miso):
+ # Page program: Master asserts CS#, sends PP command, sends 3-byte
+ # page address, sends >= 1 data bytes, de-asserts CS#.
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.putx([12, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate in (2, 3, 4):
+ # Bytes 2/3/4: Master sends page address (24bits, MSB-first).
+ self.addr |= (mosi << ((4 - self.cmdstate) * 8))
+ # self.putx([0, ['Page address, byte %d: 0x%02x' % \
+ # (4 - self.cmdstate, mosi)]])
+ if self.cmdstate == 4:
+ self.putx([24, ['Page address: 0x%06x' % self.addr]])
+ self.addr = 0
+ elif self.cmdstate >= 5:
+ # Bytes 5-x: Master sends data bytes (until CS# de-asserted).
+ # TODO: For now we hardcode 256 bytes per page / PP command.
+ if self.cmdstate <= 256 + 4: # TODO: While CS# asserted.
+ self.data.append(mosi)
+ # self.putx([0, ['New data byte: 0x%02x' % mosi]])
+
+ if self.cmdstate == 256 + 4: # TODO: If CS# got de-asserted.
+ # s = ', '.join(map(hex, self.data))
+ s = ''.join(map(chr, self.data))
+ self.putx([24, ['Page data']])
+ self.putx([25, ['Page data: %s' % s]])
+ self.data = []
+ self.state = None
+ return
+
+ self.cmdstate += 1
+
+ def handle_cp(self, mosi, miso):
+ pass # TODO
+
+ def handle_dp(self, mosi, miso):
+ pass # TODO
+
+ def handle_rdp_res(self, mosi, miso):
+ pass # TODO
+
+ def handle_rems(self, mosi, miso):
+ if self.cmdstate == 1:
+ # Byte 1: Master sends command ID.
+ self.ss_block = self.ss
+ self.putx([16, ['Command: %s' % cmds[self.state][1]]])
+ elif self.cmdstate in (2, 3):
+ # Bytes 2/3: Master sends two dummy bytes.
+ # TODO: Check dummy bytes? Check reply from device?
+ self.putx([24, ['Dummy byte: %s' % mosi]])
+ elif self.cmdstate == 4:
+ # Byte 4: Master sends 0x00 or 0x01.
+ # 0x00: Master wants manufacturer ID as first reply byte.
+ # 0x01: Master wants device ID as first reply byte.
+ self.manufacturer_id_first = True if (mosi == 0x00) else False
+ d = 'manufacturer' if (mosi == 0x00) else 'device'
+ self.putx([24, ['Master wants %s ID first' % d]])
+ elif self.cmdstate == 5:
+ # Byte 5: Slave sends manufacturer ID (or device ID).
+ self.ids = [miso]
+ d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
+ self.putx([24, ['%s ID' % d]])
+ elif self.cmdstate == 6:
+ # Byte 6: Slave sends device ID (or manufacturer ID).
+ self.ids.append(miso)
+ d = 'Manufacturer' if self.manufacturer_id_first else 'Device'
+ self.putx([24, ['%s ID' % d]])
+
+ if self.cmdstate == 6:
+ id = self.ids[1] if self.manufacturer_id_first else self.ids[0]
+ self.putx([24, ['Device: Macronix %s' % device_name[id]]])
+ self.state = None
+ else:
+ self.cmdstate += 1
+
+ def handle_rems2(self, mosi, miso):
+ pass # TODO
+
+ def handle_enso(self, mosi, miso):
+ pass # TODO
+
+ def handle_exso(self, mosi, miso):
+ pass # TODO
+
+ def handle_rdscur(self, mosi, miso):
+ pass # TODO
+
+ def handle_wrscur(self, mosi, miso):
+ pass # TODO
+
+ def handle_esry(self, mosi, miso):
+ pass # TODO
+
+ def handle_dsry(self, mosi, miso):
+ pass # TODO
+
+ def decode(self, ss, es, data):
+
+ ptype, mosi, miso = data
+
+ # if ptype == 'DATA':
+ # self.putx([0, ['MOSI: 0x%02x, MISO: 0x%02x' % (mosi, miso)]])
+
+ # if ptype == 'CS-CHANGE':
+ # if mosi == 1 and miso == 0:
+ # self.putx([0, ['Asserting CS#']])
+ # elif mosi == 0 and miso == 1:
+ # self.putx([0, ['De-asserting CS#']])
+
+ if ptype != 'DATA':
+ return
+
+ self.ss, self.es = ss, es
+
+ # If we encountered a known chip command, enter the resp. state.
+ if self.state is None:
+ self.state = mosi
+ self.cmdstate = 1
+
+ # Handle commands.
+ if self.state in cmds:
+ s = 'handle_%s' % cmds[self.state][0].lower().replace('/', '_')
+ handle_reg = getattr(self, s)
+ handle_reg(mosi, miso)
+ else:
+ self.putx([24, ['Unknown command: 0x%02x' % mosi]])
+ self.state = None