from time import time as current_time import sys import numpy from scipy.interpolate import interp1d from scipy.integrate import odeint from scipy.optimize import fmin from matplotlib import pyplot global time0 time0 = current_time() tau = 2*numpy.pi def taylor_sin(a): x = a % tau r = (x -x**3/6 +x**5/120 -x**7/5040 +x**9/362880 -x**11/39916800 +x**13/6227020800 -x**15/1307674368000 +x**17/355687428096000 -x**19/121645100408832000 +x**21/51090942171709440000 -x**23/25852016738884976640000 +x**25/15511210043330985984000000 -x**27/10888869450418352160768000000 #+x**29/8841761993739701954543616000000 #-x**31/8222838654177922817725562880000000 #+x**33/8683317618811886495518194401280000000 #-x**35/10333147966386144929666651337523200000000 #+x**37/13763753091226345046315979581580902400000000 #-x**39/20397882081197443358640281739902897356800000000 ) return r def taylor_cos(a): x = a % tau r = (1 -x**2/2 +x**4/24 -x**6/720 +x**8/40320 -x**10/3628800 +x**12/479001600 -x**14/87178291200 +x**16/20922789888000 -x**18/6402373705728000 +x**20/2432902008176640000 -x**22/1124000727777607680000 +x**24/620448401733239439360000 -x**26/403291461126605635584000000 #+x**28/304888344611713860501504000000 #-x**30/265252859812191058636308480000000 #+x**32/263130836933693530167218012160000000 #-x**34/295232799039604140847618609643520000000 #+x**36/371993326789901217467999448150835200000000 #-x**38/523022617466601111760007224100074291200000000 ) return r ### trig approximations cos = taylor_cos sin = taylor_sin ### radii: global r0 r0 = 1. #meters -- the length of cable in the first full-circle rotation r_anchor = .2 #meters -- the radius of the anchor point r_winch = .2 #meters -- the max radius of the roll of cable length = 1000 #meters -- the length of the cable phi_max = 2 * (length - r0) / r_winch #rad r = lambda phi: r0 + r_winch*(1 - phi/(2*phi_max))*phi # cable let out r_sat = lambda phi: numpy.sqrt(r(phi)**2 + r_anchor) # radius of satellite ### gravitational acceleration: geopotential = 3.987 * 10**14 #cubic meters per second^2 earth_radius = 6.3675 * 10**6 #meters balloon_height = 40*10**3 height = lambda phi: balloon_height + r(phi) * cos(phi) g = lambda phi: geopotential / (earth_radius + height(phi))**2 ### quadratic friction: density = .003 #kg/m^3 kappa = .25 # for a sphere radius = .1 #meters -- radius of the satellite cage Area = numpy.pi * radius **2 # for a sphere quad_co = kappa * density * Area # fric_quad = quad_co * (r * phi1 * vcm_co)**2 ### mass: global m, Mass m = 39.7 #kilograms -- mass of the satellite cage (overestimate) l = 0.16 #kilograms/meter -- density of Super Max cable, 16mm: 269.8kN l = 0.41 #kilograms/meter -- density of Super Max cable, 26mm: 647.4kN max_tension = 647.4 #kN, given by choice of cable above. Mass = 670 #kilograms -- mass of /everything/ M = lambda phi: Mass - m - l*r(phi) r_cm = lambda phi: (m*r(phi) + .5*l*r(phi)**2) / (m + l*r(phi) + M(phi)) v_cm_co = lambda phi: 1 - r_cm(phi)/r(phi) tan = lambda phi: r_anchor / r(phi) # tan(theta) def throw(phi, time): """The diff eqs for the windup.""" phi, phi1 = phi prime_vars = [ # phi' = phi' phi1, # phi'' = ( tan(phi) - r_winch/r(phi) ) * phi1**2 + g(phi) * ( sin(phi) - cos(phi)*tan(phi) ) / r(phi) - quad_co * r(phi) *(v_cm_co(phi) * phi1 )**2 / m ] return prime_vars #good final times: 20 185 1874 def solve_fun(func, init_vars, space=(0, 1874, 10**5)): time0 = current_time() time = numpy.linspace(*space) soln = odeint(func, init_vars, time) print "took %s seconds to solve" % (current_time() - time0) return time, soln def interpret(soln, max_tension=max_tension): phi = soln[:, 0] phi1 = soln[:, 1] v_tan = v_cm_co(phi) * phi1 * r(phi) / 1000 #kilometers/second cos_t = lambda phi: cos(numpy.arctan(tan(phi))) # cos(theta) tension = (m/cos_t(phi))*(phi1**2 * r(phi) - g(tau/4))/1000 #kiloNewtons cable_moment = l*((r(phi) - r_cm(phi))**3 - r_cm(phi)**3)/3 #kg m^2 moment = m*(r(phi) - r_cm(phi))**2 + cable_moment - M(phi)*r_cm(phi)**2 momentum = moment*phi1**2 #kg m^2/s^2 try: maxindex = numpy.argmax(tension >= max_tension) max_arg = numpy.argmax(v_tan[:maxindex]) except ValueError: max_arg = numpy.argmax(v_tan) return phi, phi1, v_tan, cos_t, tension, moment, momentum, max_arg def plot(time, soln, graphs=['all'], i=7): phi, phi1, v_tan, cos_t, tension, moment, momentum, max_arg = \ interpret(soln) phi_max, phi1_max, v_tan_max, tension_max, moment_max, momentum_max = \ map(lambda x: numpy.ndarray.__getitem__(x, max_arg), [phi, phi1, v_tan, tension, moment, momentum]) def test(*args): b = 0 for string in args: b += string in graphs or \ ('all' in graphs and "!" + string not in graphs) return bool(b) i -= 1 if test('gravity'): pyplot.figure(i) pyplot.plot(time, g(phi)) pyplot.grid(True) pyplot.ylabel("gravitational acceleration (m/s^2)") pyplot.xlabel("time (seconds)") i -= 1 if test('phi', 'r', 'radius'): pyplot.figure(i) pyplot.plot(time, phi / tau, label="phi (cycles)") pyplot.plot(time, r(phi), label="r (m)") pyplot.grid(True) pyplot.legend(loc="upper left") pyplot.title("phi and radius vs. time") pyplot.ylabel("phi (cycles) and radius (meters)") pyplot.xlabel("time (seconds)") i -= 1 if test("phi'", "omega", "phi1"): pyplot.figure(i) pyplot.plot(time, phi1 / tau) pyplot.grid(True) pyplot.ylabel("phi' (Hertz)") pyplot.xlabel("time (seconds)") i -= 1 if test('v_tan', 'tension'): pyplot.figure(i) rect = [.1, .1, .8, .8] ax1 = pyplot.axes(rect) ax1.yaxis.tick_left() ax1.xaxis.grid(True) pyplot.plot(phi / tau, v_tan, marker='+', markevery=len(phi)/50) pyplot.ylabel("+: tangential velocity (km/s)") pyplot.xlabel("phi (cycles)") pyplot.ylim(ymin=0) ax2 = pyplot.axes(rect, frameon=False, sharex=ax1) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') pyplot.setp(ax2.get_xticklabels(), visible=False) pyplot.plot(phi / tau, tension, marker='x', markevery=len(phi)/50) pyplot.ylabel("x: Tension (kN)") pyplot.ylim(ymin=0) pyplot.axvline(x=phi_max/tau) i -= 1 if test('moment'): pyplot.figure(i) pyplot.plot(phi / tau, moment) pyplot.grid(True) pyplot.ylabel("Moment of Inertia (kg m^2)") pyplot.xlabel("phi (cycles)") i -= 1 if test('momentum'): pyplot.figure(i) pyplot.plot(phi / tau, momentum) pyplot.grid(True) pyplot.ylabel("Angular Momentum (kg m^2 s^-2)") pyplot.xlabel("phi (cycles)") #import pdb; pdb.set_trace() def opt_fun(guesses, f, func, init_vars): """Solve, plot, and compare the diff eq.""" global r0, m, Mass r0, m, Mass = guesses time, soln = solve_fun(func, init_vars) phi, phi1, v_tan, cos_t, tension, moment, momentum, max_arg = \ interpret(soln) phi_max, phi1_max, v_tan_max, tension_max, moment_max, momentum_max = \ map(lambda x: numpy.ndarray.__getitem__(x, max_arg), [phi, phi1, v_tan, tension, moment, momentum]) f.write("%s, " % r0) f.write("%s, " % m) f.write("%s, " % Mass) f.write("%s, " % phi_max) f.write("%s, " % phi1_max) f.write("%s, " % tension_max) f.write("%s\n" % v_tan_max) # If you want strict limits, you can change the return to: #return 1/v_tan + 1000*(Mass > Mass_limit) + 1000*(phi1.max() > phi1_limit) return 2/v_tan_max + Mass/600 + phi1.max() / tau v0 = numpy.sqrt(g(0) * r(0)) w0 = v0/r0 inits = [0, w0] #outfile = 'C:\\Users\\dave\\Desktop\\out' outfile = '/home/jandew/Documents/Impossible Challenges/microsatellite/out' def optimize(): fil = file(outfile, 'w') fil.write('r0, sat. mass, Total Mass, phi, omega, Tension, Max Vel.\n') guess = (r0, m, Mass) #try: print opt_fun(guess, fil, throw, inits) try: print fmin(opt_fun, guess, args=(fil, throw, inits)) finally: fil.close() def solve(): time, soln = solve_fun(throw, inits) plot(time, soln, ['all', '!gravity']) pyplot.show() if len(sys.argv) == 2: func_name = sys.argv[1] if func_name in dir(): exec(func_name + '()')