/* * This file is part of the sigrok-test project. * * Copyright (C) 2013 Bert Vermeulen * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __LINUX__ #include #endif static int debug = FALSE; static int statistics = FALSE; static char *coverage_report; static struct sr_context *ctx; struct channel { char *name; int channel; }; struct option { char *key; GVariant *value; }; struct initial_pin_info { char *name; int value; }; struct pd { const char *name; GSList *channels; GSList *options; GSList *initial_pins; }; struct output { const char *pd; const char *pd_id; int type; const char *class; int class_idx; const char *outfile; int outfd; }; struct cvg { int num_lines; int num_missed; float coverage; GSList *missed_lines; }; static struct cvg *get_mod_cov(PyObject *py_cov, const char *module_name); static void cvg_add(struct cvg *dst, const struct cvg *src); static struct cvg *cvg_new(void); static gboolean find_missed_line(struct cvg *cvg, const char *linespec); static void logmsg(const char *prefix, FILE *out, const char *format, va_list args) { if (prefix) fprintf(out, "%s", prefix); vfprintf(out, format, args); fprintf(out, "\n"); } static void DBG(const char *format, ...) { va_list args; if (!debug) return; va_start(args, format); logmsg("DBG: runtc: ", stdout, format, args); va_end(args); } static void ERR(const char *format, ...) { va_list args; va_start(args, format); logmsg("Error: ", stderr, format, args); va_end(args); } static int sr_log(void *cb_data, int loglevel, const char *format, va_list args) { (void)cb_data; if (loglevel == SR_LOG_ERR || loglevel == SR_LOG_WARN) logmsg("Error: sr: ", stderr, format, args); else if (debug) logmsg("DBG: sr: ", stdout, format, args); return SRD_OK; } static int srd_log(void *cb_data, int loglevel, const char *format, va_list args) { (void)cb_data; if (loglevel == SRD_LOG_ERR || loglevel == SRD_LOG_WARN) logmsg("Error: srd: ", stderr, format, args); else if (debug) logmsg("DBG: srd: ", stdout, format, args); return SRD_OK; } static void usage(const char *msg) { if (msg) fprintf(stderr, "%s\n", msg); printf("Usage: runtc [-dPpoiOfcS]\n"); printf(" -d (enables debug output)\n"); printf(" -P \n"); printf(" -p (optional)\n"); printf(" -o (optional)\n"); printf(" -N (optional)\n"); printf(" -i \n"); printf(" -O \n"); printf(" -f (optional)\n"); printf(" -c (optional)\n"); printf(" -S (enables statistics)\n"); exit(msg ? 1 : 0); } /* * This is a neutered version of libsigrokdecode's py_str_as_str(). It * does no error checking, but then the only strings it processes are * generated by Python's repr(), so are known good. */ static char *py_str_as_str(const PyObject *py_str) { PyObject *py_encstr; char *str, *outstr; py_encstr = PyUnicode_AsEncodedString((PyObject *)py_str, "utf-8", NULL); str = PyBytes_AS_STRING(py_encstr); outstr = g_strdup(str); Py_DecRef(py_encstr); return outstr; } /* * The following routines are callbacks for libsigrokdecode. They receive * output from protocol decoders, optionally dropping data to only forward * a selected decoder's or class' information. Output is written to either * a specified file or stdout, an external process will compare captured * output against expectations. * * Note that runtc(1) output emits the decoder "class" name instead of the * instance name. So that generated output remains compatible with existing * .output files which hold expected output of test cases. Without this * approach, developers had to "anticipate" instance names from test.conf * setups (and knowledge about internal implementation details of the srd * library), and adjust .output files to reflect those names. Or specify * instance names in each and every test.conf description (-o inst_id=ID). * * It's assumed that runtc(1) is used to check stacked decoders, but not * multiple stacks in parallel and no stacks with multiple instances of * decoders of the same type. When such configurations become desirable, * runtc(1) needs to emit the instance name, and test configurations and * output expectations need adjustment. */ static void srd_cb_py(struct srd_proto_data *pdata, void *cb_data) { struct output *op; PyObject *pydata, *pyrepr; GString *out; char *s; DBG("Python output from %s", pdata->pdo->di->inst_id); op = cb_data; pydata = pdata->data; DBG("ptr %p", pydata); if (strcmp(pdata->pdo->di->inst_id, op->pd_id)) /* This is not the PD selected for output. */ return; if (!(pyrepr = PyObject_Repr(pydata))) { ERR("Invalid Python object."); return; } s = py_str_as_str(pyrepr); Py_DecRef(pyrepr); /* Output format for testing is '- : \n'. */ out = g_string_sized_new(128); g_string_printf(out, "%" PRIu64 "-%" PRIu64 " %s: %s\n", pdata->start_sample, pdata->end_sample, pdata->pdo->di->decoder->id, s); g_free(s); if (write(op->outfd, out->str, out->len) == -1) ERR("SRD_OUTPUT_PYTHON callback write failure!"); DBG("wrote '%s'", out->str); g_string_free(out, TRUE); } static void srd_cb_bin(struct srd_proto_data *pdata, void *cb_data) { struct srd_proto_data_binary *pdb; struct output *op; GString *out; unsigned int i; DBG("Binary output from %s", pdata->pdo->di->inst_id); op = cb_data; pdb = pdata->data; if (strcmp(pdata->pdo->di->inst_id, op->pd_id)) /* This is not the PD selected for output. */ return; if (op->class_idx != -1 && op->class_idx != pdb->bin_class) /* * This output takes a specific binary class, * but not the one that just came in. */ return; out = g_string_sized_new(128); g_string_printf(out, "%" PRIu64 "-%" PRIu64 " %s:", pdata->start_sample, pdata->end_sample, pdata->pdo->di->decoder->id); for (i = 0; i < pdb->size; i++) { g_string_append_printf(out, " %.2x", pdb->data[i]); } g_string_append(out, "\n"); if (write(op->outfd, out->str, out->len) == -1) ERR("SRD_OUTPUT_BINARY callback write failure!"); } static void srd_cb_ann(struct srd_proto_data *pdata, void *cb_data) { struct srd_decoder_inst *di; struct srd_decoder *dec; struct srd_proto_data_annotation *pda; struct output *op; GString *line; int i; char **dec_ann; /* * Only inspect received annotations when they originate from * the selected protocol decoder, and an optionally specified * annotation class matches the received data. */ op = cb_data; pda = pdata->data; di = pdata->pdo->di; dec = di->decoder; DBG("Annotation output from %s", di->inst_id); if (strcmp(di->inst_id, op->pd_id)) /* This is not the PD selected for output. */ return; if (op->class_idx != -1 && op->class_idx != pda->ann_class) /* * This output takes a specific annotation class, * but not the one that just came in. */ return; /* * Print the annotation information in textual representation * to the specified output file. Prefix the annotation strings * with the start and end sample number, the decoder name, and * the annotation name. */ dec_ann = g_slist_nth_data(dec->annotations, pda->ann_class); line = g_string_sized_new(256); g_string_printf(line, "%" PRIu64 "-%" PRIu64 " %s: %s:", pdata->start_sample, pdata->end_sample, dec->id, dec_ann[0]); for (i = 0; pda->ann_text[i]; i++) g_string_append_printf(line, " \"%s\"", pda->ann_text[i]); g_string_append(line, "\n"); if (write(op->outfd, line->str, line->len) == -1) ERR("SRD_OUTPUT_ANN callback write failure!"); g_string_free(line, TRUE); } static void sr_cb(const struct sr_dev_inst *sdi, const struct sr_datafeed_packet *packet, void *cb_data) { static int samplecnt = 0; const struct sr_datafeed_logic *logic; struct srd_session *sess; GVariant *gvar; uint64_t samplerate; int num_samples; struct sr_dev_driver *driver; sess = cb_data; driver = sr_dev_inst_driver_get(sdi); switch (packet->type) { case SR_DF_HEADER: DBG("Received SR_DF_HEADER"); if (sr_config_get(driver, sdi, NULL, SR_CONF_SAMPLERATE, &gvar) != SR_OK) { ERR("Getting samplerate failed"); break; } samplerate = g_variant_get_uint64(gvar); g_variant_unref(gvar); if (srd_session_metadata_set(sess, SRD_CONF_SAMPLERATE, g_variant_new_uint64(samplerate)) != SRD_OK) { ERR("Setting samplerate failed"); break; } if (srd_session_start(sess) != SRD_OK) { ERR("Session start failed"); break; } break; case SR_DF_LOGIC: logic = packet->payload; num_samples = logic->length / logic->unitsize; DBG("Received SR_DF_LOGIC (%"PRIu64" bytes, unitsize = %d).", logic->length, logic->unitsize); srd_session_send(sess, samplecnt, samplecnt + num_samples, logic->data, logic->length, logic->unitsize); samplecnt += num_samples; break; case SR_DF_END: DBG("Received SR_DF_END"); break; } } static int run_testcase(const char *infile, GSList *pdlist, struct output *op) { struct srd_session *sess; struct srd_decoder *dec; struct srd_decoder_inst *di, *prev_di; srd_pd_output_callback cb; struct pd *pd; struct channel *channel; struct option *option; GVariant *gvar; GHashTable *channels, *opts; GSList *pdl, *l, *l2, *devices; int idx, i; int max_channel; char **decoder_class; struct sr_session *sr_sess; gboolean is_number; const char *s; GArray *initial_pins; struct initial_pin_info *initial_pin; if (op->outfile) { if ((op->outfd = open(op->outfile, O_CREAT|O_WRONLY, 0600)) == -1) { ERR("Unable to open %s for writing: %s", op->outfile, g_strerror(errno)); return FALSE; } } if (sr_session_load(ctx, infile, &sr_sess) != SR_OK){ ERR("sr_session_load() failed"); return FALSE; } sr_session_dev_list(sr_sess, &devices); if (srd_session_new(&sess) != SRD_OK) { ERR("srd_session_new() failed"); return FALSE; } sr_session_datafeed_callback_add(sr_sess, sr_cb, sess); switch (op->type) { case SRD_OUTPUT_ANN: cb = srd_cb_ann; break; case SRD_OUTPUT_BINARY: cb = srd_cb_bin; break; case SRD_OUTPUT_PYTHON: cb = srd_cb_py; break; default: ERR("Invalid op->type"); return FALSE; } srd_pd_output_callback_add(sess, op->type, cb, op); prev_di = NULL; pd = NULL; for (pdl = pdlist; pdl; pdl = pdl->next) { pd = pdl->data; if (srd_decoder_load(pd->name) != SRD_OK) { ERR("srd_decoder_load() failed"); return FALSE; } /* Instantiate decoder and pass in options. */ opts = g_hash_table_new_full(g_str_hash, g_str_equal, NULL, (GDestroyNotify)g_variant_unref); for (l = pd->options; l; l = l->next) { option = l->data; is_number = TRUE; s = g_variant_get_string(option->value, NULL); for (i = 0; i < (int)strlen(s); i++) { if (!isdigit(s[i])) is_number = FALSE; } if (is_number) { /* Integer option value */ g_hash_table_insert(opts, option->key, g_variant_new_int64(strtoull(s, NULL, 10))); } else { /* String option value */ g_hash_table_insert(opts, option->key, option->value); } } if (!(di = srd_inst_new(sess, pd->name, opts))) { ERR("srd_inst_new() failed"); return FALSE; } g_hash_table_destroy(opts); /* * Get (a reference to) the decoder instance's ID if we * are about to receive PD output from it. We need to * filter output that carries the decoder instance's name. */ if (strcmp(pd->name, op->pd) == 0) { op->pd_id = di->inst_id; DBG("Decoder of type \"%s\" has instance ID \"%s\".", op->pd, op->pd_id); } /* Map channels. */ if (pd->channels) { channels = g_hash_table_new_full(g_str_hash, g_str_equal, NULL, (GDestroyNotify)g_variant_unref); max_channel = 0; for (l = pd->channels; l; l = l->next) { channel = l->data; if (channel->channel > max_channel) max_channel = channel->channel; gvar = g_variant_new_int32(channel->channel); g_variant_ref_sink(gvar); g_hash_table_insert(channels, channel->name, gvar); } if (srd_inst_channel_set_all(di, channels) != SRD_OK) { ERR("srd_inst_channel_set_all() failed"); return FALSE; } g_hash_table_destroy(channels); } /* Set initial pins. */ if (pd->initial_pins) { initial_pins = g_array_sized_new(FALSE, TRUE, sizeof(uint8_t), di->dec_num_channels); g_array_set_size(initial_pins, di->dec_num_channels); memset(initial_pins->data, SRD_INITIAL_PIN_SAME_AS_SAMPLE0, di->dec_num_channels); for (l = pd->channels, idx = 0; l; l = l->next, idx++) { channel = l->data; for (l2 = pd->initial_pins; l2; l2 = l2->next) { initial_pin = l2->data; if (!strcmp(initial_pin->name, channel->name)) initial_pins->data[idx] = initial_pin->value; } } if (srd_inst_initial_pins_set_all(di, initial_pins) != SRD_OK) { ERR("srd_inst_initial_pins_set_all() failed"); return FALSE; } g_array_free(initial_pins, TRUE); } /* * If this is not the first decoder in the list, stack it * on top of the previous one. */ if (prev_di) { if (srd_inst_stack(sess, prev_di, di) != SRD_OK) { ERR("Failed to stack decoder instances."); return FALSE; } } prev_di = di; } /* * Bail out if we haven't created an instance of the selected * decoder type of which we shall grab output data from. */ if (!op->pd_id) { ERR("No / invalid decoder"); return FALSE; } /* Resolve selected decoder's class index, so we can match. */ dec = srd_decoder_get_by_id(pd->name); if (op->class) { if (op->type == SRD_OUTPUT_ANN) l = dec->annotations; else if (op->type == SRD_OUTPUT_BINARY) l = dec->binary; else { /* Only annotations and binary can have a class. */ ERR("Invalid decoder class"); return FALSE; } idx = 0; while (l) { decoder_class = l->data; if (!strcmp(decoder_class[0], op->class)) { op->class_idx = idx; break; } idx++; l = l->next; } if (op->class_idx == -1) { ERR("Output class '%s' not found in decoder %s.", op->class, pd->name); return FALSE; } DBG("Class %s index is %d", op->class, op->class_idx); } sr_session_start(sr_sess); sr_session_run(sr_sess); sr_session_stop(sr_sess); srd_session_destroy(sess); if (op->outfile) close(op->outfd); return TRUE; } static PyObject *start_coverage(GSList *pdlist) { PyObject *py_mod, *py_pdlist, *py_pd, *py_func, *py_args, *py_kwargs, *py_cov; GSList *l; struct pd *pd; DBG("Starting coverage."); if (!(py_mod = PyImport_ImportModule("coverage"))) return NULL; if (!(py_pdlist = PyList_New(0))) return NULL; for (l = pdlist; l; l = l->next) { pd = l->data; py_pd = PyUnicode_FromFormat("*/%s/*.py", pd->name); if (PyList_Append(py_pdlist, py_pd) < 0) return NULL; Py_DecRef(py_pd); } if (!(py_func = PyObject_GetAttrString(py_mod, "coverage"))) return NULL; if (!(py_args = PyTuple_New(0))) return NULL; if (!(py_kwargs = Py_BuildValue("{sO}", "include", py_pdlist))) return NULL; if (!(py_cov = PyObject_Call(py_func, py_args, py_kwargs))) return NULL; if (!(PyObject_CallMethod(py_cov, "start", NULL))) return NULL; Py_DecRef(py_pdlist); Py_DecRef(py_args); Py_DecRef(py_kwargs); Py_DecRef(py_func); return py_cov; } static struct cvg *get_mod_cov(PyObject *py_cov, const char *module_name) { PyObject *py_mod, *py_pathlist, *py_path, *py_func, *py_pd; PyObject *py_result, *py_missed, *py_item; DIR *d; struct dirent *de; struct cvg *cvg_mod; int num_lines, num_missed, linenum, i, j; char *path, *linespec; if (!(py_mod = PyImport_ImportModule(module_name))) return NULL; cvg_mod = NULL; py_pathlist = PyObject_GetAttrString(py_mod, "__path__"); for (i = 0; i < PyList_Size(py_pathlist); i++) { py_path = PyList_GetItem(py_pathlist, i); PyUnicode_FSConverter(PyList_GetItem(py_pathlist, i), &py_path); path = PyBytes_AS_STRING(py_path); if (!(d = opendir(path))) { ERR("Invalid module path '%s'", path); return NULL; } while ((de = readdir(d))) { if (strncmp(de->d_name + strlen(de->d_name) - 3, ".py", 3)) continue; if (!(py_func = PyObject_GetAttrString(py_cov, "analysis2"))) return NULL; if (!(py_pd = PyUnicode_FromFormat("%s/%s", path, de->d_name))) return NULL; if (!(py_result = PyObject_CallFunction(py_func, "O", py_pd))) return NULL; Py_DecRef(py_pd); Py_DecRef(py_func); if (!cvg_mod) cvg_mod = cvg_new(); if (PyTuple_Size(py_result) != 5) { ERR("Invalid result from coverage of '%s/%s'", path, de->d_name); return NULL; } num_lines = PyList_Size(PyTuple_GetItem(py_result, 1)); py_missed = PyTuple_GetItem(py_result, 3); num_missed = PyList_Size(py_missed); cvg_mod->num_lines += num_lines; cvg_mod->num_missed += num_missed; for (j = 0; j < num_missed; j++) { py_item = PyList_GetItem(py_missed, j); linenum = PyLong_AsLong(py_item); linespec = g_strdup_printf("%s/%s:%d", module_name, de->d_name, linenum); cvg_mod->missed_lines = g_slist_append(cvg_mod->missed_lines, linespec); } DBG("Coverage for %s/%s: %d lines, %d missed.", module_name, de->d_name, num_lines, num_missed); Py_DecRef(py_result); } } if (cvg_mod->num_lines) cvg_mod->coverage = 100 - ((float)cvg_mod->num_missed / (float)cvg_mod->num_lines * 100); Py_DecRef(py_mod); Py_DecRef(py_path); return cvg_mod; } static struct cvg *cvg_new(void) { struct cvg *cvg; cvg = calloc(1, sizeof(struct cvg)); return cvg; } static gboolean find_missed_line(struct cvg *cvg, const char *linespec) { GSList *l; for (l = cvg->missed_lines; l; l = l->next) if (!strcmp(l->data, linespec)) return TRUE; return FALSE; } static void cvg_add(struct cvg *dst, const struct cvg *src) { GSList *l; char *linespec; dst->num_lines += src->num_lines; dst->num_missed += src->num_missed; for (l = src->missed_lines; l; l = l->next) { linespec = l->data; if (!find_missed_line(dst, linespec)) dst->missed_lines = g_slist_append(dst->missed_lines, linespec); } } static int report_coverage(PyObject *py_cov, GSList *pdlist) { PyObject *py_func, *py_mod, *py_args, *py_kwargs, *py_outfile, *py_pct; GSList *l, *ml; struct pd *pd; struct cvg *cvg_mod, *cvg_all; float total_coverage; int lines, missed, cnt; DBG("Making coverage report."); /* Get coverage for each module in the stack. */ lines = missed = 0; cvg_all = cvg_new(); for (cnt = 0, l = pdlist; l; l = l->next, cnt++) { pd = l->data; if (!(cvg_mod = get_mod_cov(py_cov, pd->name))) return FALSE; printf("coverage: scope=%s coverage=%.0f%% lines=%d missed=%d " "missed_lines=", pd->name, cvg_mod->coverage, cvg_mod->num_lines, cvg_mod->num_missed); for (ml = cvg_mod->missed_lines; ml; ml = ml->next) { if (ml != cvg_mod->missed_lines) printf(","); printf("%s", (char *)ml->data); } printf("\n"); lines += cvg_mod->num_lines; missed += cvg_mod->num_missed; cvg_add(cvg_all, cvg_mod); DBG("Coverage for module %s: %d lines, %d missed", pd->name, cvg_mod->num_lines, cvg_mod->num_missed); } lines /= cnt; missed /= cnt; total_coverage = 100 - ((float)missed / (float)lines * 100); /* Machine-readable stats on stdout. */ printf("coverage: scope=all coverage=%.0f%% lines=%d missed=%d\n", total_coverage, cvg_all->num_lines, cvg_all->num_missed); /* Write text report to file. */ /* io.open(coverage_report, "w") */ if (!(py_mod = PyImport_ImportModule("io"))) return FALSE; if (!(py_func = PyObject_GetAttrString(py_mod, "open"))) return FALSE; if (!(py_args = PyTuple_New(0))) return FALSE; if (!(py_kwargs = Py_BuildValue("{ssss}", "file", coverage_report, "mode", "w"))) return FALSE; if (!(py_outfile = PyObject_Call(py_func, py_args, py_kwargs))) return FALSE; Py_DecRef(py_kwargs); Py_DecRef(py_func); /* py_cov.report(file=py_outfile) */ if (!(py_func = PyObject_GetAttrString(py_cov, "report"))) return FALSE; if (!(py_kwargs = Py_BuildValue("{sO}", "file", py_outfile))) return FALSE; if (!(py_pct = PyObject_Call(py_func, py_args, py_kwargs))) return FALSE; Py_DecRef(py_pct); Py_DecRef(py_kwargs); Py_DecRef(py_func); /* py_outfile.close() */ if (!(py_func = PyObject_GetAttrString(py_outfile, "close"))) return FALSE; if (!PyObject_Call(py_func, py_args, NULL)) return FALSE; Py_DecRef(py_outfile); Py_DecRef(py_func); Py_DecRef(py_args); Py_DecRef(py_mod); return TRUE; } int main(int argc, char **argv) { PyObject *coverage; GSList *pdlist; struct pd *pd; struct channel *channel; struct option *option; struct output *op; int ret, c; char *opt_infile, **kv, **opstr; struct initial_pin_info *initial_pin; op = malloc(sizeof(struct output)); op->pd = NULL; op->pd_id = NULL; op->type = -1; op->class = NULL; op->class_idx = -1; op->outfd = 1; pdlist = NULL; opt_infile = NULL; pd = NULL; coverage = NULL; while ((c = getopt(argc, argv, "dP:p:o:N:i:O:f:c:S")) != -1) { switch (c) { case 'd': debug = TRUE; break; case 'P': pd = g_malloc(sizeof(struct pd)); pd->name = g_strdup(optarg); pd->channels = pd->options = pd->initial_pins = NULL; pdlist = g_slist_append(pdlist, pd); break; case 'p': case 'o': case 'N': if (g_slist_length(pdlist) == 0) { /* No previous -P. */ ERR("Syntax error at '%s'", optarg); usage(NULL); } kv = g_strsplit(optarg, "=", 0); if (!kv[0] || (!kv[1] || kv[2])) { /* Need x=y. */ ERR("Syntax error at '%s'", optarg); g_strfreev(kv); usage(NULL); } if (c == 'p') { channel = malloc(sizeof(struct channel)); channel->name = g_strdup(kv[0]); channel->channel = strtoul(kv[1], NULL, 10); /* Apply to last PD. */ pd->channels = g_slist_append(pd->channels, channel); } else if (c == 'o') { option = malloc(sizeof(struct option)); option->key = g_strdup(kv[0]); option->value = g_variant_new_string(kv[1]); g_variant_ref_sink(option->value); /* Apply to last PD. */ pd->options = g_slist_append(pd->options, option); } else { initial_pin = malloc(sizeof(struct initial_pin_info)); initial_pin->name = g_strdup(kv[0]); initial_pin->value = strtoul(kv[1], NULL, 10); /* Apply to last PD. */ pd->initial_pins = g_slist_append(pd->initial_pins, initial_pin); } break; case 'i': opt_infile = optarg; break; case 'O': opstr = g_strsplit(optarg, ":", 0); if (!opstr[0] || !opstr[1]) { /* Need at least abc:def. */ ERR("Syntax error at '%s'", optarg); g_strfreev(opstr); usage(NULL); } op->pd = g_strdup(opstr[0]); if (!strcmp(opstr[1], "annotation")) op->type = SRD_OUTPUT_ANN; else if (!strcmp(opstr[1], "binary")) op->type = SRD_OUTPUT_BINARY; else if (!strcmp(opstr[1], "python")) op->type = SRD_OUTPUT_PYTHON; else if (!strcmp(opstr[1], "exception")) /* Doesn't matter, we just need it to bomb out. */ op->type = SRD_OUTPUT_PYTHON; else { ERR("Unknown output type '%s'", opstr[1]); g_strfreev(opstr); usage(NULL); } if (opstr[2]) op->class = g_strdup(opstr[2]); g_strfreev(opstr); break; case 'f': op->outfile = g_strdup(optarg); op->outfd = -1; break; case 'c': coverage_report = optarg; break; case 'S': statistics = TRUE; break; default: usage(NULL); } } if (argc > optind) usage(NULL); if (g_slist_length(pdlist) == 0) usage(NULL); if (!opt_infile) usage(NULL); if (!op->pd || op->type == -1) usage(NULL); sr_log_callback_set(sr_log, NULL); if (sr_init(&ctx) != SR_OK) return 1; srd_log_callback_set(srd_log, NULL); if (srd_init(DECODERS_DIR) != SRD_OK) return 1; if (coverage_report) { if (!(coverage = start_coverage(pdlist))) { DBG("Failed to start coverage."); if (PyErr_Occurred()) { PyErr_PrintEx(0); PyErr_Clear(); } } } ret = 0; if (!run_testcase(opt_infile, pdlist, op)) ret = 1; if (coverage) { DBG("Stopping coverage."); if (!(PyObject_CallMethod(coverage, "stop", NULL))) ERR("Failed to stop coverage."); else if (!(report_coverage(coverage, pdlist))) ERR("Failed to make coverage report."); else DBG("Coverage report in %s", coverage_report); if (PyErr_Occurred()) { PyErr_PrintEx(0); PyErr_Clear(); } Py_DecRef(coverage); } srd_exit(); sr_exit(ctx); return ret; }