1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
##
## This file is part of the libsigrokdecode project.
##
## Copyright (C) 2014 Gump Yang <gump.yang@gmail.com>
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
##
import sigrokdecode as srd
class Decoder(srd.Decoder):
api_version = 1
id = 'ir_nec6122'
name = 'IR NEC 6122'
longname = '1-Wire Infrared remote controller NEC 6122'
desc = 'Unidirectional, asynchronous serial bus.'
license = 'gplv2+'
inputs = ['logic']
outputs = ['ir_nec6122']
probes = [
{'id': 'ir', 'name': 'IR', 'desc': 'Data line'},
]
optional_probes = []
options = {
'level': ['Tirgger Level L/H', 0],
'cnt_peroid': ['Peroid time (us)', 13500],
'cnt_repeat': ['Repeat time (us)', 11250],
'cnt_repeat_end': ['Repeat end time (us)', 562],
'cnt_accuracy': ['Accuracy range (us)', 100],
'cnt_dazero': ['Data 0 time (us)', 1125],
'cnt_daone': ['Data 1 time (us)', 2250],
'polarity': ['Polarity', 'active-low'],
}
annotations = [
['bit', 'Bit'],
['preoid', 'Preoid'],
['info', 'Info'],
['error', 'Error'],
]
annotation_rows = (
('fields', 'Fields', (1, 2, 3, 4, 5, 6)),
('bits', 'Bits', (0,)),
)
def putx(self, data):
self.put(self.ss_edge, self.samplenum, self.out_ann, data)
def putx(self, data):
self.put(self.ss_start, self.samplenum, self.out_ann, data)
def putb(self, data):
self.put(self.ss_bit, self.samplenum, self.out_ann, data)
def __init__(self, **kwargs):
self.olddata = None
self.ss_edge = 0
self.ss_bit = 0
self.first_transition = True
self.bitwidth = None
self.state = 'IDLE'
self.data = 0;
self.count = 0;
self.ss_start = 0
self.act_polar = 0
def start(self):
# self.out_python = self.register(srd.OUTPUT_PYTHON)
self.out_ann = self.register(srd.OUTPUT_ANN)
self.act_polar = 1 if self.options['polarity'] == 'active-low' else 0
self.old_ir = self.act_polar
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
samplerate = float(self.samplerate)
x = float(self.options['cnt_accuracy']) / 1000000.0
self.margin = int(samplerate * x) - 1
x = float(self.options['cnt_peroid']) / 1000000.0
self.preoid = int(samplerate * x) - 1
x = float(self.options['cnt_repeat']) / 1000000.0
self.repeat = int(samplerate * x) - 1
x = float(self.options['cnt_repeat_end']) / 1000000.0
self.repeat_end = int(samplerate * x) - 1
x = float(self.options['cnt_dazero']) / 1000000.0
self.dazero = int(samplerate * x) - 1
x = float(self.options['cnt_daone']) / 1000000.0
self.daone = int(samplerate * x) - 1
x = float(10000) / 1000000.0
self.end = int(samplerate * x) - 1
def handle_bits(self, tick):
ret = 0xff
if tick in range(self.dazero - self.margin,
self.dazero + self.margin):
ret = 0
elif tick in range(self.daone - self.margin,
self.daone + self.margin):
ret = 1
if ret < 2:
self.putb([0, ['%d' % ret]])
self.data = self.data * 2 + ret
self.count = self.count + 1
self.ss_bit = self.samplenum
return ret;
def data_judge(self, name):
buf = int((self.data & 0xff00) / 0x100)
nbuf = int(self.data & 0xff)
ret = buf & nbuf
if ret == 0:
self.putx([2, ['%s: 0x%02x' % (name, buf)]])
else:
self.putx([3, ['%s Error: 0x%04x' % (name, self.data)]])
self.data = self.count = 0
self.ss_bit = self.ss_start = self.samplenum
return ret
def decode(self, ss, es, data):
if self.samplerate is None:
raise Exception("Cannot decode without samplerate.")
for (self.samplenum, pins) in data:
self.ir = pins[0]
# Wait for any edge (rising or falling).
if self.old_ir == self.ir:
continue
if self.old_ir == self.act_polar:
b = self.samplenum - self.ss_bit
# State machine.
if self.state == 'IDLE':
if b in range(self.preoid - self.margin,
self.preoid + self.margin):
self.putx([1, ['Preoid', 'Pre', 'P']])
self.data = self.count = 0
self.state = 'ADDRESS'
elif b in range(self.repeat - self.margin,
self.repeat + self.margin):
self.putx([1, ['Repeat', 'Rep', 'R']])
self.data = self.count = 0
self.ss_bit = self.ss_start = self.samplenum
elif self.state == 'ADDRESS':
self.handle_bits(b)
if self.count > 15:
if self.data_judge(self.state) == 0:
self.state = 'CODE'
else:
self.state = 'IDLE'
elif self.state == 'CODE':
self.handle_bits(b)
if self.count > 15:
self.data_judge(self.state)
self.state = 'IDLE'
self.old_ir = self.ir
|