1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
|
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.
##
import sigrokdecode as srd
#from .lists import *
from .IrmpPythonWrap import IrmpWrap
class SamplerateError(Exception):
pass
class Decoder(srd.Decoder):
api_version = 3
id = 'ir_irmp'
name = 'IR IRMP'
longname = 'IR IRMP multi protocol decoder'
desc = 'IRMP - multi protocol infrared decoder with support for many IR protocols by Frank M. (ukw)'
license = 'gplv2+'
inputs = ['logic']
outputs = []
tags = ['IR']
channels = (
{'id': 'ir', 'name': 'IR', 'desc': 'Data line'},
)
options = (
{'id': 'polarity', 'desc': 'Polarity', 'default': 'active-low',
'values': ('active-low', 'active-high')},
#
# {'id': 'cd_freq', 'desc': 'Carrier Frequency', 'default': 0},
)
annotations = (
('packet', 'Packet'),
('debug', 'Debug'),
)
annotation_rows = (
('packets', 'IR Packets', (0,)),
('debug', 'Debug', (1,)),
)
irmp = IrmpWrap()
def putIr(self, data):
ss = data['start'] * self.subSample
es = data['end'] * self.subSample
ad = data['data']['address']
pr = data['data']['protocol']
pn = data['data']['protocolName']
cm = data['data']['command']
repeat = data['data']['repeat']
# print(f" {self.samplenum} {ss} - {es} ({data['start']} - {data['end']})")
self.put(ss, es, self.out_ann,
[0, [ f"Protocol: {pn} ({pr}), Address 0x{ad:04x}, Command: 0x{cm:04x} {'repeated' if repeat else ''}",
f"P: {pn} ({pr}), Ad: 0x{ad:x}, Cmd: 0x{cm:x} {'rep' if repeat else ''}",
f"P: {pr} A: 0x{ad:x} C: 0x{cm:x} {'rep' if repeat else ''}",
f"C:{cm:x} A:{ad:x} {'r' if repeat else ''}",
f"C:{cm:x}",
]])
def __init__(self):
self.irmp = Decoder.irmp
self.reset()
def reset(self):
self.irmp.Reset()
def start(self):
self.out_ann = self.register(srd.OUTPUT_ANN)
def metadata(self, key, value):
if key == srd.SRD_CONF_SAMPLERATE:
self.samplerate = value
def decode(self):
if not self.samplerate:
raise SamplerateError('Cannot decode without samplerate.')
if (self.samplerate % self.irmp.GetSampleRate()) != 0:
raise SamplerateError(f'samplerate has to be multple of {self.irmp.GetSampleRate()}' )
self.subSample = int(self.samplerate / self.irmp.GetSampleRate())
sampleSkip = self.subSample
#self.reset()
#print (f" startdecode: samplenum {self.samplenum} rate: {self.samplerate} subsample {self.subSample}")
# cd_count = None
# if self.options['cd_freq']:
# cd_count = int(self.samplerate / self.options['cd_freq']) + 1
self.active = 0 if self.options['polarity'] == 'active-low' else 1
(ir,) = self.wait([{'skip' : sampleSkip}])
i = 0
while True:
##### todo: check if ir carrier frequency detection can be used
#
# Detect changes in the presence of an active input signal.
# The decoder can either be fed an already filtered RX signal
# or optionally can detect the presence of a carrier. Periods
# of inactivity (signal changes slower than the carrier freq,
# if specified) pass on the most recently sampled level. This
# approach works for filtered and unfiltered input alike, and
# only slightly extends the active phase of input signals with
# carriers included by one period of the carrier frequency.
# IR based communication protocols can cope with this slight
# inaccuracy just fine by design. Enabling carrier detection
# on already filtered signals will keep the length of their
# active period, but will shift their signal changes by one
# carrier period before they get passed to decoding logic.
# if cd_count:
# (cur_ir,) = self.wait([{0: 'e'}, {'skip': cd_count}])
# if self.matched[0]:
# cur_ir = self.active
# if cur_ir == prev_ir:
# continue
# prev_ir = cur_ir
# self.ir = cur_ir
# else:
# (self.ir,) = self.wait({0: 'e'})
#
#print (f"samplenum {self.samplenum}")
#if i%100 == 0:
# self.put(self.samplenum, self.samplenum+10, self.out_ann,
# [1, [ f"{self.samplenum} - {i}",]])
if self.active == 1:
ir = 1 - ir
if self.irmp.AddSample(ir):
data = self.irmp.GetData()
self.putIr(data)
i = i + 1
(ir,) = self.wait([{'skip' : sampleSkip}])
|